Автономная некоммерческая организация высшего образования «СЕВЕРО-ЗАПАДНЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Рабочая программа дисциплины

«ФИЗИЧЕСКИЕ ОСНОВЫ МЕТОДОВ ИССЛЕДОВАНИЯ МАТЕРИАЛОВ В ЛИТЕЙНОМ ПРОИЗВОДСТВЕ»

Направление подготовки:

22.03.02 Металлургия

Профиль подготовки:

22.03.02.1 Технология литейных процессов

Квалификация (степень):

бакалавр

Форма обучения

заочная

Санкт-Петербург 2017 Рабочая программа дисциплины «Физические основы методов исследования материалов в литейном производстве» разработана в соответствии с требованиями ФГОС ВО по направлению 22.03.02 «Металлургия».

Основным документом для разработки рабочей программы является рабочий учебный план по направлению 22.03.02 «Металлургия», профилю 22.03.02.1 «Технология литейных процессов».

Учебные и методические материалы по учебной дисциплине размещены в электронной информационно-образовательной среде университета.

Разработчик:

А.В. Сивенков, к. т. н., доцент.

Рецензент:

М.Г. Шарапов д.т.н., заместитель генерального директора по научной работе, начальник "Научно-производственного экспериментального комплекса (НПЭК)"НИЦ "Курчатовский институт"-ЦНИИ КМ "Прометей"

Рабочая программа рассмотрена на заседании кафедры «Машиностроения и металлургии» «06» сентября 2017 года, протокол №1

СОДЕРЖАНИЕ

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ	
ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	5
3. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ	6
4. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	8
5.1. ТЕМЫ КОНТРОЛЬНЫХ РАБОТ	8
5.2. ТЕМЫ КУРСОВЫХ РАБОТ (ПРОЕКТОВ)	9
5.3. ПЕРЕЧЕНЬ МЕТОДИЧЕСКИХ РЕКОМЕНДАЦИЙ	9
5.4. ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТУ	9
6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	11
7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	, 11
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	12
9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	12
10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРІ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	
11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО УЧЕБНОЙ	1 1
ДИСЦИПЛИНЕ	
12. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА	
ПРИЛОЖЕНИЕ	15

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- 1.1. Целью освоения дисциплины «Физические основы методов исследования материалов в литейном производстве» является изучение современных методов исследования таких металлических.
- 1.2. Изучение дисциплины «Физические основы методов исследования материалов в литейном производстве» способствует решению следующих задач:
- усвоение основных методов исследования металлических сплавов;
- современные методы необходимы при постановке экспериментальных работ по получению новых сплавов;
 - исследовании формовочных смесей;
 - выяснении скорости твердения;
 - образования новых фаз;
- анализе процессов взаимодействия формовочных материалов с металлами;
- исследовании пригара на отливках и состава шлаков при использовании новых флюсов и т.п.
 - 1.3. Процесс изучения дисциплины направлен на формирование следующих компетенций

профессиональные (ПК)

Код компетенции	Наименование и (или) описание компетенции
ПК-2	Способность выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы
ПК-10	Способность осуществлять и корректировать технологические процессы в металлургии и материалообработке

1.4. В результате освоения дисциплины обучающийся должен

Знать: основные методы анализа и свойства групп материалов; приборы и методику проведения исследований.

Уметь: применять методы для решения задач исследования металлических сплавов и формовочных неметаллических материалов; определять физико-механические и химические свойства исследуемых материалов; выбирать оптимальные технологические процессы получения отливок, анализиро-

вать природу дефектов отливок и разрабатывать мероприятия по их предупреждению.

Владеть навыками: исследования металлических сплавов и формовочных неметаллических материалов; пользования лабораторной базой; быть компетентным в области испытания и применения на производстве металлических и неметаллических материалов.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Физические основы методов исследования материалов в литейном производстве» относится к вариативной части дисциплин по выбору блока Б.1

Дисциплина взаимосвязана с дисциплинами: «Физика», «Химия», «Математика», «Физическая химия», «Теплотехника», «Информатика».

Дисциплина является предшествующей для изучения специальных дисциплин.

Приобретённые знания будут непосредственно использованы студентами при изучении последующих дисциплин, прохождении производственной практики ,написании выпускных квалификационных работ.

3. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ

		Виды занятий		ій	Виды контро- ля				
	Наименование модуля и темы учебной дисциплины	Трудоёмкость по учеб- ному плану (час/з.е.)	Лекции	Практическое за- нятие	Лабораторное за- нятие	Самостоятельная работа	Контрольная рабо- та	Курсовая работа (проект)	Экзамен
1	Модуль 1 Физико-химические методы.	36/1	1	2		33			
2	Тема 1.1. Физико-химические методы	18	0,5	2		15,5			
3	Тема 1.2. Определение состава поверхностного слоя, отклонений от стехиометрии	18	0,5			17,5			
4	Модуль 2 Электрохимические методы определения состава	36/1	1			35			
5	Тема 2.1. Определение адсорб- ции	18	0,5			17,5			
6	Тема 2.2. Термические методы	18	0,5			17,5			
7	Модуль 3. Спектральные методы	36/1	2	4		30			
8	Тема 3.1. РФЭС, ожеспектроскопия, микрозондовый РСА, ЭПР, ЯМР	12	1	2		9			
9	Тема 3.2.Испытания механических свойств	12				12			
10	Тема 3.3. Неразрушающие методы контроля	12	1	2		9			
	Всего	108/3	4	6		98	1		зач.

4. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

МОДУЛЬ 1. Методы определения отклонений от стехиометрического состава металлов и сплавов (36 часов)

Тема 1.1. Физико-химические методы (18 часов)

Рентгенофазовый анализ. Определение состава и степени кристалличности образующихся на поверхности фаз. Рентгеновский определитель минералов.

Оптическая и электронная микроскопия. Принципиальная схема прибора. Подготовка образцов. Методика анализа микрофотографий.

Виды учебных занятий:

Лекция: Физико-химические методы 0,5 час

Практическое занятие: Общие сведения о современных приборах, приме-

),5 час 2 час

няемых при исследовании (рентгеноструктурный анализ, нейтронография, просвечивающая электронная микроскопия, сканирующая электронная микроскопия, рентгеновская фотоэлектронная спектроско-

пия)

Тема 1.2. Определение состава поверхностного слоя, отклонений от стехиометрии (18 часов)

Кулонометрия. Тонкослойная полярография. Тонкослойная хронопотенциометрия. Циклическая хроновольтамперометрия.

Виды учебных занятий:

Лекция: Определение состава поверхностного слоя, откло-

0,5 час

нений от стехиометрии

МОДУЛЬ 2. Электрохимические и термические методы определения состава (36 часов)

Тема 2.1. Определение адсорбции (18 часов)

Поверхностное электричество. Определение емкости и электрической проводимости формируемых поверхностных слоев.

Виды учебных занятий:

Лекпия:

Определение адсорбции

0,5 час

Тема 2.2. Термические методы (18 часов)

Термография приэлектродного слоя и расчет термодинамических характеристик образовавшегося на поверхности вещества. Методы определения рНз приэлектродного слоя. Конструкции микроэлектродов и материалы для них. Требования к микроэлектродам. Импедансметрия поверхности. Поверхностное электричество. Определение емкости и электрической проводимости формируемых поверхностных слоев. Требования к конструкции экспериментальной ячейки и к методике измерений.

Виды учебных занятий:

Лекция Термические методы

0,5 час

МОДУЛЬ 3. Спектральные методы (36 часов)

Тема 3.1. РФЭС, ожеспектроскопия, микрозондовый РСА, ЭПР, ЯМР (12 часов)

Понятия макро- и микроструктуры строения металлов. Изучение макроструктуры металла. Изучение микроструктуры металла. Рентгеноструктурный анализ. Рентгеноспектральный микроанализ.

Виды учебных занятий:

Лекция: РФЭС, ожеспектроскопия, микрозондовый РСА, 1 час

ЭПР, ЯМР

Практическое занятие: Характеристический спектр рентгеновских лучей. 2 час

Взаимодействие рентгеновских лучей с веществом. Детекторы и методы регистрации рентгеновского из-

лучения

Тема 3.2.Испытания механических свойств (12 часов)

Механические свойства, характеризующие способность детали, изготовленной из определенного материала, выдерживать различные нагрузки или сопротивляться истиранию при работе. Свойства, определяющие способность металла сопротивляться деформированию и разрушению.

Методы и приборы для определения механических свойств таких, как прочность, твердость, упругость, пластичность и пр.

Определения механических характеристик металла при испытании образцов на растяжение, сжатие, сдвиг, кручение, изгиб или их совместное воздействие. Вид механических испытаний в зависимости от условий работы детали. Статические и динамические испытания. Испытания металлов при пониженной, комнатной или высокой температурах...Диаграммы растяжения материалов.

Тема 3.3. Неразрушающие методы контроля (12 часов)

Дефектоскопия капиллярная, люминисцентная, цветная.

Магнитные методы контроля. Акустические методы контроля.

Радиационные методы контроля.

Виды учебных занятий:

 Лекция
 Неразрушающие методы контроля
 1 час

 Практическое занятие
 Ознакомление с современными методами элементно 2 час

го анализа материала

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

5.1. Темы контрольной работы

	• •
Модуль дисциплины	Наименование тем
Модуль 1 Физико-	Определение pHs приэлектродного слоя (в зоне протекания элек-
химические методы.	трохимической реакции).
Модуль 2 Электрохи-	Метод оптической топографии и его использование для опреде-
мические методы оп-	ления поверхностных дефектов.
ределения состава	Метод эллипсометрического микрозонда и его комбинация с фо-
Модуль 3. Спек-	то-эдс.

тральные методы	Микрозондовый рентгеноспектральный анализ.
	ЭВМ в микрозондовых исследованиях.
	Метод сканирующего конденсаторного зонда (кельвин-зонд).
	Измерение температуры приэлектродного слоя (в двойном электрическом слое).
	Кулонометрические методы определения толщины гальванических покрытий.
	Лазерно-эллипсометрический зонд и его использование при ис- следовании образования и роста зародышей новой фазы на по-
	верхности.
	Термогравиметрический анализ.
	Метод масс-спектрометрии вторичных ионов.
	Методы оже- и рентгеновской фотоэлектронной спектроскопии.
	Исследование поверхности методом вольтамперометрии в сочетании с измерением фототока.
	Метод лазерного зонда и электронная микроскопия.
	Компьютерное оптическое видео-микрозондирование поверхно-
	стных слоев.
	Эллипсометрическая спектротомография поверхностных наност-
	руктур.
	Оптическая томография тонких слоев.
	Профилографирование поверхности.
	Методика подготовка образцов.

5.2. Темы курсовой работы (проекта)

Выполнение курсовой работы (проекта) учебным планом не предусмотрено.

5.3. Перечень методических рекомендаций

№ п/п	Наименование
1	Методические рекомендации по выполнению контрольной работы.

5.4. Перечень вопросов для подготовки к зачёту

- 1. Основной набор физических методов как единая система, позволяющая измерить или вычислить большинство из известных свойств, характеристик и параметров твердых тел;
 - 2. Принципы растровой электронной микроскопии;
- 3. Физика рентгеновских лучей. Способы получения и природа рентгеновских лучей;
 - 4. Фрактография. Качественные и количественные методы;
- 5. Дифракция рентгеновских лучей в кристаллах. Кинематическое приближение;
- 6. Использование методов просвечивающей электронной микроскопии для изучения процессов старения;
 - 7. Особенности рассеяния нейтронов кристаллами;
 - 8. Конструкция нейтронного дифрактометра;

- 9. Использование методов просвечивающей электронной микроскопии для исследования структуры деформированного металла;
 - 10. Взаимодействие электронов с веществом;
- 11. Выбор методов структурного анализа при решении задач материаловедения;
- 12. Особенности подготовки объектов исследования методами сканирующей электронной микроскопии;
- 13. Особенности подготовки объектов исследования методами просвечивающей электронной дифракционной микроскопии;
- 14. Методы рентгеноструктурного анализа монокристаллов. Методы неподвижного и вращающегося кристалла.
- 15. Представление методов рентгеноструктурного анализа в обратном пространстве;
- 16. Области применения методов рентгеноструктурного анализа монокристаллов;
 - 17. Основы метода спектроскопии Оже-электронов;
 - 18. Конструкция Оже-спектрометра;
- 19. Требования к образцам при использовании метода спектроскопии Оже-электронов;
- 20. Возможности и примеры применения Оже-электронной микроскопии;
- 21. Конструкция электронного микроскопа. Оптическая схема и принцип действия;
 - 22. Электронография. Принципы дифракции быстрых электронов;
- 23. Построение сечений обратных решеток кристаллов. Индицирование микроэлектронограмм;
- 24. Электронно-микроскопические изображения. Теория дифракционного контраста. Экстинкционная длина;
- 25. Формирование изображений в светлом и темном полях методами электронной микроскопии;
- 26. Спектрометры рентгеновского излучения. Полупроводниковые детекторы рентгеновского излучения;
- 27. Применение электронной микроскопии. Локальный фазовый анализ:
- 28. Применение электронной микроскопии. Определение ориентационного соотношения кристаллов.
- 29. Применение электронной микроскопии. Исследование дислокационной структуры;

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине по решению кафедры оформлен отдельным приложением к рабочей программе.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

а) основная литература:

- 1. Анализ химического состава чугуна и стали на атомно-эмиссонном спектрометре «Искролайн-100» [Электронный ресурс]: методические указания к лабораторным работам по дисциплинам: «Теория и технология производства стали 2», «Теоретические основы сталеплавильных процессов», «Разливка стали и кристаллизация слитка»/ Электрон. текстовые данные. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2014. 37 с. Режим доступа: http://www.iprbookshop.ru/55073
- 2.Роготовский А.Н. Отбор и подготовка проб чугуна и стали к спектральному анализу [Электронный ресурс]: методические указания к лабораторным работам по дисциплинам «Теория и технология производства стали 2», «Теоретические основы сталеплавильных процессов», «Разливка стали и кристаллизация слитка»/ А.Н. Роготовский, А.А. Шипельников— Электрон. текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2014.— 25 с.—

Режим доступа: http://www.iprbookshop.ru/55127

3. Физические основы методов исследования материалов в литейном производстве [Электронный учебник]: учеб.-метод. комплекс / сост. Т.В. Неверова, 2009, Изд-во СЗТУ. - 155 с

Режим доступа:http://lib.nwotu.ru:8087/jirbis2/.

б) дополнительная

- 1. Технология художественного литья: учеб. пособие/под ред. Ри Хосена.-СПб.: Изд-во СПбГПУ, 2006.- 454 с.
- 2. Теория литейных процессов: учеб. пособие/В.Д. Белов [и др.].-Хабаровск: РИОТИП, 2008.- 578 с.

Программное обеспечение

- 1. ППП MS Office 2010
- 2. Тестовый редактор Блокнот
- 3. Браузеры IE, Google Chrome, Opera и др.

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1. Электронная информационно-образовательная среда АНО ВО "СЗТУ" (ЭИОС СЗТУ) [Электронный ресурс]. –

Режим доступа: http://edu.nwotu.ru/

- 2. Электронная библиотека АНО ВО "СЗТУ" [Электронный ресурс]. Режим доступа: http://lib.nwotu.ru:8087/jirbis2/
- 3. Электронно-библиотечная система IPRbooks [Электронный ресурс]. Режим доступа: http://www.iprbookshop.ru/
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. –

Режим доступа: http://window.edu.ru/

- 5. Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН)[Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/
 - 6. Справочная правовая система «Консультант Плюс»,
 - 7. Справочная правовая система «Гарант».

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮ-ЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Изучение дисциплины «Физические основы методов исследования материалов в литейном производстве» имеет свои особенности, которые обусловлены её местом в подготовке бакалавра. Выполняя важную образовательную функцию, связанную с формированием культуры мышления у студентов, «Современные методы исследования металов и сплавов» выступает в качестве основы приобретения способностей к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения. На основе изучения данной дисциплины у обучаемых формируются нравственнопатриотическое сознание, вырабатывается гражданская позиция.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельную работу студента, консультации.

На завершающем этапе изучения дисциплины необходимо, воспользовавшись предложенными вопросами для подготовки к зачету ,размещенными в электронной информационной образовательной среде (ЭИОС), проверить качество усвоения учебного материала.

В случае затруднения в ответах на поставленные вопросы рекомендуется повторить учебный материал.

После изучения соответствующих тем дисциплины следует приступить к выполнению контрольной работы.

В завершении изучения учебной дисциплины студент обязан пройти промежуточную аттестацию. Вид промежуточной аттестации определяется рабочим учебным планом. Форма проведения промежуточной аттестации – компьютерное тестирование с использованием автоматизированной системы тестирования знаний студентов в ЭИОС.

К промежуточной аттестации допускаются студенты, выполнившие требования рабочего учебного плана, выполнившие контрольные работы и набравшие достаточное количество баллов за учебную работу в соответствии с балльно-рейтинговой системой.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛО-ГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРА-ЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии:

10.1. Internet – технологии

(WWW(англ. World Wide Web – Всемирная Паутина) – технология работы в сети с гипертекстами;

FTP (англ. File Transfer Protocol – протокол передачи файлов) – технология передачи по сети файлов произвольного формата;

IRC (англ. Internet Relay Chat – поочередный разговор в сети, чат) – технология ведения переговоров в реальном масштабе времени, дающая возможность разговаривать с другими людьми по сети в режиме прямого диалога;

ICQ (англ. I seek you – я ищу тебя, можно записать тремя указанными буквами) – технология ведения переговоров один на один в синхронном режиме.

10.2. Дистанционное обучение с использованием ЭИОС на платформе Moodle

- Технология мультимедиа в режиме диалога.
- Технология неконтактного информационного взаимодействия (виртуальные кабинеты, лаборатории).
- Гипертекстовая технология (электронные учебники, справочники, словари, энциклопедии).

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВА-ТЕЛЬНОГО ПРОЦЕССА ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

- 1. Библиотека.
- 2. Справочно-правовая система Консультант Плюс.
- 3. Электронная информационно-образовательная среда университета.
- 4. Локальная сеть с выходом в Интернет.

12. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА

Вид учебной работы, за которую ставятся баллы	Баллы
Участие в online занятиях, прослушивание видеолекций	0 - 5
Контрольный тест к модулю 1	8 - 0
Контрольный тест к модулю 2	0-9
Контрольный тест к модулю 3	0-9
Контрольный тест к модулю 4	0-9
КОНТРОЛЬНАЯ РАБОТА	0 - 30
ИТОГОВЫЙ КОНТРОЛЬНЫЙ ТЕСТ	0 - 30
ВСЕГО	0 - 100

БОНУСЫ (баллы, которые могут быть добавлены до 100)	Баллы
- за активность	0 - 10
- за участие в олимпиаде	0 - 50
- за участие в НИРС	0 - 50
- за оформление заявок на полезные методы (рац. предложения)	0 - 50

Бальная шкала оценки имеет вид (в баллах):

Оценка	Количество баллов
Зачтено	51 – 100
Не зачтено	менее 51

Контрольная работа оценивается в соответствии с таблицей:

Оценка	Количество баллов
«онрилто»	27 – 30
«хорошо»	23 – 26
«удовлетворительно»	18 – 22
«неудовлетворительно»	менее 18

Приложение к рабочей программе

дисциплины «Физические основы методов исследования материалов в литейном производстве» по направлению подготовки 22.03.02 - Металлургия

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. Перечень формируемых компетенций

профессиональные (ПК)

Код компетенции	Наименование и (или) описание компетенции
ПК-2	Способность выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы
ПК-10	Способность осуществлять и корректировать технологические процессы в металлургии и материалообработке

2. Паспорт фонда оценочных средств

№ п/п	Контролируемые моду- ли (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Модуль 1 Физико-	ПК-2,10	Контрольный тест 1
	химические методы.		Практическое занятие 1
2	Модуль 2 Электрохими-	ПК-2,10	Контрольный тест 2
	ческие методы определе-		
	ния состава		
3	Модуль 3. Спектральные	ПК-2,10	Контрольный тест 3
	методы		Практическое занятие 2
			Практическое занятие 3
4	Модули 1 - 3	ПК-2,10	Итоговый контрольный
			тест. Контрольная работа

3. Показатели и критерии оценивания компетенций по этапам формирования, описание шкал оценивания

Этапы освоения компетенции	Показатели достижения заданного уровня освоения компетенций	Критерии оценивания результатов обучения				
		1	2	3	4	5
Первый этап	Знать: ПК-2,10 основные методы анализа и свойства групп материалов; приборы и методику проведения исследований.	Не знает	Знаком с основными методами и способами контроля и измерений физических величин, но не знаком с методами анализа и свойства групп материалов.	Способен выбрать метод анализа и свойства групп материалов, но ошибается в контроле состава и свойств вещества в производственных условиях плавки металлов и сплавов.	Знает основные методы и способы контроля и измерений свойства групп материалов, но ошибается в методах и способах проведения исследований.	Знает основные методы анализа и свойства групп материалов; приборы и методику проведения исследований.
Второй этап	Уметь: ПК-2,10 применять методы для решения задач исследования металлических сплавов и формовочных неметаллических материалов; определять физико-механические и химические свойства исследуемых материалов; выбирать оптимальные технологические процессы получения отливок, анализировать природу дефектов отливок и разрабатывать мероприятия по их предупреждению.	Не умеет	Ошибается при выборе контрольно- измерительного прибора для измерений в заданных производствиных условиях.	Владеет основами оптимального выбора контрольно- измерительного прибора для измерений технологических параметров, но ошибается в заданных производствиных условиях.	Правильно осуществляет решения задач исследования металлических сплавов и формовочных неметаллических материалов ,но ошибается в определении физикомеханических и химических свойства исследуемых материалов.	Правильно применяет методы для решения задач исследования металлических сплавов и формовочных неметаллических материалов; определяет физико-механические и химические свойства исследуемых материалов; выбирать оптимальные технологические процессы получения отливок, анализировать природу дефектов отливок и разрабатывать мероприятия по их предупреждению.
Третий этап	Владеть: ПК-2,10навыками: исследования металлических сплавов и формовочных неметаллических материалов; пользования лабораторной базой; быть компетентным в области испытания и применения на производстве металлических и неметаллических материалов	Не вла- деет	Частично владеет навыками: исследования металлических сплавов и формовочных неметаллических материалов, но допускает ошибки в получении оперативной информации, необходимой для управления процессами.	Владеет навыками: ис- следования металличе- ских сплавов и формо- вочных неметалличе- ских материалов;, но допускает ошибки при пользования лабора- торной базой.	Владеет исследованиями металлических сплавов и формовочных неметаллических материалов; пользования лабораторной базой; в, но недостаточно компетентен в области испытания и применения на производстве металлических и неметаллических материало.	Владеет фундаментальными профессиональными знаниями с тем, чтобы исследовать металлические сплавы и формовочные неметаллические материалы; пользоваться лабораторной базой; быть компетентным в области испытания и применения на производстве металлических и неметаллических материалов.

4. Шкалы оценивания

(балльно-рейтинговая система)

Вид учебной работы, за которую ставятся баллы			
Участие в online занятиях, прослушивание видеолекций			
Контрольный тест к модулю 1			
Контрольный тест к модулю 2			
Контрольный тест к модулю 3	0 – 9		
Контрольный тест к модулю 4	0 – 9		
КОНТРОЛЬНАЯ РАБОТА			
ИТОГОВЫЙ КОНТРОЛЬНЫЙ ТЕСТ			
ВСЕГО			

Бальная шкала оценки имеет вид (в баллах):

Оценка	Количество баллов
Зачтено	51 – 100
Не зачтено	менее 51

5. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций при изучении учебной дисциплины в процессе освоения образовательной программы

5.1. Типовой вариант задания на контрольную работу

Контрольная работа выполняется в виде реферата.

Вариант выбирается по сумме двух последних цифр шифра студента.

- 1. Определение pHs приэлектродного слоя (в зоне протекания электрохимической реакции).
- 2. Метод оптической топографии и его использование для определения поверхностных дефектов.
 - 3. Метод эллипсометрического микрозонда и его комбинация с фото-эдс.
 - 4. Микрозондовый рентгеноспектральный анализ.
 - 5. ЭВМ в микрозондовых исследованиях.
 - 6. Метод сканирующего конденсаторного зонда (кельвин-зонд).
- 7. Измерение температуры приэлектродного слоя (в двойном электрическом слое).
- 8. Кулонометрические методы определения толщины гальванических покрытий.
- 9. Лазерно-эллипсометрический зонд и его использование при исследовании образования и роста зародышей новой фазы на поверхности.
 - 10. Термогравиметрический анализ.
 - 11. Метод масс-спектрометрии вторичных ионов.
 - 12. Методы оже- и рентгеновской фотоэлектронной спектроскопии.
- 13. Исследование поверхности методом вольтамперометрии в сочетании с измерением фототока.
 - 14. Метод лазерного зонда и электронная микроскопия.
 - 15. Компьютерное оптическое видео-микрозондирование поверхностных слоев.
 - 16. Эллипсометрическая спектротомография поверхностных наноструктур.

- 17. Оптическая томография тонких слоев.
- 18. Профилографирование поверхности.
- 19. Методика подготовка образцов.

5.2. Типовой тест промежуточной аттестации

- 1. Макроструктуру сплава изучают ...
 - а) с использованием различных типов микроскопов.
 - b) невооруженным глазом.
 - с) с использованием спектографа.
 - d) с помощью рентгеноспектрального анализа.
- 1. Прибор для измерения вещества следует называть ...?
 - а) расходометром.
 - b) расходомером.
 - с) счётчиком количества.
 - d) интегратором расхода.
- 3. Манометром следует называть приборы для измерения ...
 - а) полного (абсолютного) давления.
 - b) давления окружающей воздушной атмосферы.
 - с) вакуума.
 - d) избыточного давления.
- 4. Погрешностью измерения называют ...
 - а) ошибку в регистрации результата измерения.
 - b) округление значения показания средства измерения.
 - с) разность между показаниями прибора и истинным значением измеряемой величины.
 - d) разность между показанием прибора и действительным значением измеряемой величины.
- 5. Спектроскоп предназначен ...
 - а) полного исследования химического состава сплава.
 - b) для определения содержания только одного элемента сплава.
 - с) для определения содержания двух элементов сплава.
 - d) для определения температуры сплава.
- 6. Для измерения массы материала на ленте транспортёра используют устройство. Термоэлектрический преобразователь предназначен для
 - а) контактного измерения температуры расплава.
 - b) бесконтактного измерения температуры расплава.
 - с) определения электропроводности сплава.
 - d) определение химического состава сплава.

6. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

- 6.1 Итоговый контрольный тест доступен студенту только во время тестирования, согласно расписания занятий или в установленное деканатом время.
 - 6.2. Студент информируется о результатах текущей успеваемости.
- 6.3 Студент получает информацию о текущей успеваемости, начислении бонусных баллов и допуске к процедуре итогового тестирования от преподавателя или в ЭИОС.
 - 6.4. Производится идентификация личности студента.

- 6.5. Студентам, допущенным к промежуточной аттестации, открывается итоговый контрольный тест.
 - 6.6. Тест закрывается студентом лично по завершении тестирования или