Автономная некоммерческая организация высшего образования «СЕВЕРО-ЗАПАДНЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Рабочая программа дисциплины

«АЛГОРИТМИЗАЦИЯ И УПРАВЛЕНИЕ ТЕХНИЧЕСКИМИ СИСТЕМАМИ»

Направление подготовки: 27.03.04 – Управление в технических системах

Профиль подготовки: Информационные технологии в управлении

Квалификация (степень): бакалавр

Форма обучения заочная

Санкт-Петербург, 2017

Рабочая программа дисциплины «Алгоритмизация и управление в технических системах» разработана в соответствии с требованиями ФГОС ВО по направлению подготовки 27.03.04 Управление в технических системах и профиля подготовки Информационные технологии в управлении.

Основным документом для разработки рабочей программы является рабочий учебный план направления 27.03.04 Управление в технических системах.

Учебные и методические материалы по учебной практике размещены в электронной информационно-образовательной среде университета.

Разработчик(и):

Рахманова И.О., кандидат технических наук, доцент

Рецензент:

Смирнова Н.А., зам. генерального директора ПО «Ленстройматериалы», кандидат технических наук, доцент

Рабочая программа рассмотрена на заседании кафедры информационных технологий и безопасности «06» сентября 2017 года, протокол №1.

СОДЕРЖАНИЕ

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНО ПРОГРАММЫ	
3. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ	6
4. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	7
5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ CAMOCTOЯТЕЛЬНО РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	
5.1. Темы контрольных работ	12
5.2. Темы курсовых работ (проектов)	
5.3. Перечень методических рекомендаций	12
5.4. Перечень вопросов для подготовки к экзамену	12
6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	14
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИН «АЛГОРИТМИЗАЦИЯ И УПРАВЛЕНИЕ В ТЕХНИЧЕСКИХ СИСТЕМАХ»	
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТІ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	16
10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	17
11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО УЧЕБНОЙ ДИСЦИПЛИНЕ	E .18
12. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНКИ ЗНАНИЙ	18
Приложение	20

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- 1.1 Целями освоения дисциплины **«Управление в технических системах»** является:
 - изучение алгоритмов контроля и управления, используемых при автоматизированном управлении сложными технологическими процессами;
 - приобретение знаний и навыков в применении на практике аппаратных и программных средств, необходимых для профессиональной деятельности, в качестве дисциплины профессионального цикла, необходимой для последующего логического перехода к изучению цикла профессиональных дисциплин по направлению 27.03.04 Управление в технических системах профиля подготовки: «Информационные технологии в управлении».
- 1.2. Изучение дисциплины **«Управление в технических системах»** способствует решению следующей задачи профессиональной деятельности:
 - усвоение основных положений теоретических основ автоматизированного управления.
- 1.3. Процесс изучения дисциплины направлен на формирование следующих компетенций:

Общепрофессиональные (ОПК):

Код компетенции	Наименование и (или) описание компетенции
ОПК-9	способностью использовать навыки работы с компьютером, владеть методами информационных технологий, соблюдать основные требования информационной безопасности

Профессиональные (ПК):

Код компетенции	Наименование и (или) описание компетенции
ПК-4	готовностью участвовать в подготовке технико-экономического обоснования проектов создания систем и средств автоматизации и управления
ПК-5	способностью осуществлять сбор и анализ исходных данных для расчета и проектирования систем и средств автоматизации и управления
ПК-17	готовностью производить инсталляцию и настройку системного, прикладного и инструментального программного обеспечения систем автоматизации и управления

1.4. В результате изучения дисциплины студент должен:

Знать: основные принципы автоматизированного управления, основы анализа объектов управления, основные алгоритмы контроля и управления, обеспечивающие оптимальное функционирование АСУТП.

Уметь: уметь применять полученные знания при использовании алгоритмов управления, самостоятельно применять основные положения теории к решению конкретных задач по автоматизированному управлению технологическими процессами

Владеть: методами разработки алгоритмов контроля и управления для технологических процессов с различными уровнями автоматизации, умением проводить расчет настроек непрерывных и дискретных регуляторов.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Место дисциплины «Алгоритмизация и управление техническими системами» относится к циклу профессиональных дисциплин и входит в его базовую часть.

Теоретической и практической основами дисциплины являются курсы «Математика», «Информатика», «Теория автоматического управления», «Программирование и основы алгоритмизации». Приобретенные знания студентами будут непосредственно использованы при изучении дисциплин «Проектирование АСУТП», «Автоматизированное проектирование систем и системами», средств управления a также курсовом И дипломном проектировании.

3. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ

			-	Виды з	аняти	й	Ви	ды кон	троля
№ п/п	Наименование модуля и темы учебной дисциплины	Трудоёмкость по учебному плану (час/з.е.)	Лекции	Практическое занятие	Тесты	Самостоятельная работа	Контрольная работа	Курсовая работа (проект)	Зачёт (экзамен)
1.	Модуль 1. Общая характеристика и основные понятия теории управления технологическими процессами	60	1	2		57			
2.	Введение								
3.	Раздел 1. Введение, функции, структуры и классификация АСУТП	20	0,5	0,5		19			
4.	Тема 1.1. Определение ТП	5							
5.	Тема 1.2. ТП как объект управления	5							
6.	Тема 1.3. Определение, назначение, функции и состав АСУТП	5							
7.	Тема 1.4. Классификация ТП	5							
8.	Раздел 2. Особенности современных технологических процессов	20	0,5	0,5		19			
9.	Раздел 3. Управление производством продукции	20		1		19			
10.	Модуль 2. Алгоритмы управления	60	2	4		54			
11.	Раздел 4. Алгоритмы локального и программного управления сосредоточенных систем	30	1	2		27			
12.	Тема 4.1. Общие сведения о промышленных системах регулирования	6	0,5			5,5			
13.	Тема 4.2. Алгоритмы, реализующие типовые законы управления	8	0,5			7,5			
14.	Тема 4.3. Расчет настроек регуляторов в линейных сосредоточенных системах	8		1		7			
15.	Тема 4.4. Позиционные системы автоматического управления	8		1		7			
16.	Раздел 5. Алгоритмы управления систем с распределенными параметрами	30	1	2		27			
17.	Тема 5.1. Распределенные звенья	10	0,5	0,5		9			
18.	Тема 5.2. Распределенный высокоточный регулятор	10	0,5	0,5		9			
19.	Тема 5.3. Расчет настроек распределённого регулятора	10		1		9			
20.	Модуль 3. Цифровые системы управления	40	2	4		34			
21.	Раздел 6. Методы определения параметров дискретных регуляторов в системах ПЦУ	20	1	2		17			
22.	Тема 6.1. Особенности построения и функционирования систем прямого цифрового управления	10	0,5	1		8,5			
23.	Тема 6.2. Методы расчета настроек цифровых регуляторов	10	0,5	1		8,5	К.р.		

24.	Раздел 7. Программное управление	20	1	2		17		
25.	Тема 7.1. Основные понятия программного управления	10	0,5	1		8,5		
26.	Тема 7.2. Микро-ЭВМ в информационно-измерительных подсистемах систем управления технологическим оборудованием	10	0,5	1		8,5		
27.	Модуль 4. Моделирование систем управления	20	1	2		17		
28.	Раздел 8. Программное обеспечение для моделирования АСУ ТП	20	1	2		17		
29.	Тема 8.1. Элементы моделирования систем управления ТП	10	0,5	1		8,5		
30.	Тема 8.2. SCADA – системы	10	0,5	1		8,5		
31.	Заключение							
32.	Всего:	180/5	6	12	8	162	1	экз

4. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Модуль 1. Общая характеристика и основные понятия теории управления технологическими процессами (60 часов)

Введение

Раздел 1. Введение, функции, структуры и классификация АСУТП (9 часов)

Введение. Функции, структуры и классификация АСУТП. Особенности современных технологических процессов. Управление производством однородной продукции (непрерывные процессы). Управление производством неоднородной продукции (дискретные процессы).

Тема 1.1. Определение ТП (4 часа) Виды учебных занятий:

Лекция: Определение ТП 0,1час

Тема 1.2. ТП как объект управления (5 часов)

Виды учебных занятий:

Лекция: . ТП как объект управления 0,1час

Тема 1.3. Определение, назначение, функции и состав АСУТП (5 часов)

Виды учебных занятий:

Лекция: . Определение, назначение, функции и состав 0,1час

АСУТП

Тема 1.4. Классификация ТП (5 часов)

Лекция: . Классификация ТП 0,2час

Раздел 2. Особенности современных технологических процессов (20 часов)

Задачи подсистемы контроля в АСУТП. Алгоритмы контроля, работающие в режиме реального времени (алгоритмы циклического и адресного опроса датчиков, аналитической градуировки датчиков, сглаживания дискретных сигналов, экстраполяции и интерполяции дискретно-измеряемых величин, дискретного интегрирования и дифференцирования, косвенного измерения, обнаружения нарушений и неисправностей в АСУТП). Расчет текущих технико-экономических показателей.

Виды учебных занятий:

Лекция: . Особенности современных технологических 0,5час процессов

Раздел 3. Управление производством продукции (20 часов)

Типовые непрерывные и дискретные законы управления. Нелинейные и адаптивные алгоритмы локального управления. Методы определения параметров распределенных регуляторов. Методы определения параметров дискретных регуляторов в системах ПЦУ. Программное управление ТП. Примеры синтеза программного управления.

Виды учебных занятий:

Лекция: Управление производством продукции 0,5час

Модуль 2. Алгоритмы управления (60 часов)

Раздел 4. Алгоритмы локального и программного управления сосредоточенных систем (40 часов)

Сравнительная характеристика алгоритмов статической оптимизации и их использование в АСУТП. Алгоритмы адаптивной идентификации. Примеры

использования алгоритмов статической оптимизации и адаптации при управлении ТП. Алгоритмы оптимального быстродействия. Алгоритмы оптимальной стабилизации

Тема 4.1. Общие сведения о промышленных системах регулирования (10 часов)

Виды учебных занятий:

Лекция: Общие сведения о промышленных системах 0,5час

регулирования

Тема 4.2. Алгоритмы, реализующие типовые законы управления (10 часов)

Виды учебных занятий:

Лекция: Алгоритмы, реализующие типовые законы 0,5час

управления

Тема 4.3. Расчет настроек регуляторов в линейных сосредоточенных системах (10 часов)

Виды учебных занятий:

Лекция: Расчет настроек регуляторов в линейных 0,5час

сосредоточенных системах

Практическое занятие: Занятие №1 по теме «Расчет настроек 4 часа

регуляторов в линейных сосредоточенных

системах»

Тема 4.4. Позиционные системы автоматического управления (10 часов)

Виды учебных занятий:

Лекция: Позиционные системы автоматического 0.5час

управления

Практическое занятие: Занятие №2 по теме «Позиционные системы 2 часа

автоматического управления»

Раздел **5.** Алгоритмы управления систем с распределенными параметрами (20 часов)

Линейные модели распределенных объектов. Модальное представление распределенных объектов. Устойчивость распределенных систем. Особенности применения критерия Найквиста. Распределенные звенья и блоки. Синтез

регуляторов для систем с распределенными параметрами. Частотные методы синтеза.

Тема 5.1. Распределенные звенья (5 часов)

Виды учебных занятий:

Лекция: Распределенные звенья 0,2час

Тема 5.2. Распределенный высокоточный регулятор (5 часов)

Виды учебных занятий:

Лекция: Распределенный высокоточный регулятор 0,3час

Тема 5.3. Расчет настроек распределённого регулятора (10 часов)

Виды учебных занятий:

Лекция: Расчет настроек распределённого регулятора 0,5час Практическое занятие: Занятие №3 по теме «Расчет настроек 2 часа

распределённого регулятора»

Модуль 3. Цифровые системы управления (40 часов)

Раздел 6. Методы определения параметров дискретных регуляторов в системах ПЦУ (20 часов)

Микропроцессорные системы автоматического управления. Принципы построения, техническая база и особенности математического описания систем регулирования. Расчет настроек цифровых регуляторов.

Тема 6.1. Особенности построения и функционирования систем прямого цифрового управления (10 часов)

Виды учебных занятий:

Лекция: Особенности построения и функционирования 0,25час

систем прямого цифрового управления

Тема 6.2. Методы расчета настроек цифровых регуляторов (10 часов)

Виды учебных занятий:

Лекция: Методы расчета настроек цифровых регуляторов 0,25час

Практическое

Занятие №4 «Методы расчета настроек цифровых

занятие:

регуляторов»

Раздел 7. Программное управление (20 часов)

Автоматические системы логического управления. Краткие сведения о ПЛК и его программном обеспечении. Структура ПЛК. Проектирование СЛУ.

Тема 7.1. Основные понятия программного управления (10 часов)

Виды учебных занятий:

Лекция:

Основные понятия программного управления

0,25час

2 часа

Тема 7.2. Микро-ЭВМ в информационно-измерительных подсистемах систем управления технологическим оборудованием (10 часов)

Виды учебных занятий:

Лекция:

Микро-ЭВМ в информационно-измерительных подсистемах 0,25час систем управления технологическим оборудованием

Модуль 4. Моделирование систем управления (20 часов)

Раздел 8. Программное обеспечение для моделирования АСУ ТП

[5], c. 243 – 273, 398 – 438

Компьютерное моделирование систем автоматического регулирования. Технология моделирования CAP. SCADA - системы. Функциональные возможности TRACE MODE.

Тема 8.1. Элементы моделирования систем управления ТП (10 часов)

Виды учебных занятий:

Лекция:

Элементы моделирования систем управления ТП

0,25час

Тема 8.2. SCADA – системы (9 часов)

Виды учебных занятий:

Лекция:

SCADA – системы

0,25час

Практическое

Занятие №5 «SCADA – системы»

2 часа

занятие:

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

5.1. Темы контрольных работ

Учебные и методические материалы по выполнению контрольной работы размещены в электронной информационно-образовательной среде университета.

№ п/п	Тема контрольной работы
Модуль 3. Цифровые системы управления	Синтез оптимальных законов управления стационарным технологическим процессом

5.2. Темы курсовых работ (проектов)

Рабочими учебными планами профилей подготовки выполнение курсовых работ (проектов) не предусмотрено.

5.3. Перечень методических рекомендаций

№ п/п	Наименование
1	Методические рекомендации по подготовке к практическим
	занятиям
2	Методические рекомендации по выполнению контрольной работы

5.4. Перечень вопросов для подготовки к экзамену

- 1. Что такое автоматическая система управления?
- 2. Что такое атоматизированная система управления?
- 3. Что такое алгоритм управления?
- 4. Что такое управляемая величина?
- 5. Назовите устройства, составляющие систему автоматического управления
- 6. Назовите фундаментальные принципы управления.
- 7. Перечислите основные виды автоматического управления
- 8. Перечислите основные законы регулирования.
- 9. Какие типовые воздействия используются при изучении динамики элементов систем.
- 10. Что такое передаточная функция?
- 11. Что такое "Ноль" передаточной функции?
- 12. Полюсы передаточной функции это
- 13. Что такое фазовая частотная характеристика?

- 14. Что такое амплитудная частотная характеристика?
- 15. Максимальный порядок дифференциального уравнения типовых звеньев.
- 16. Укажите, какой параметр типового звена определяет величину выходного сигнала.
- 17. Как называется график переходного процесса выходной координаты звена, если на его вход подается единичное ступенчатое воздействие?
- 18. Чему равен максимальный наклон в дБ/декаду по знаку и величине ЛАЧХ колебательного звена?
- 19. Какие функциональные элементы входят в состав неизменяемой части синтезируемой САУ?
- 20. Какие функциональные элементы входят в изменяемую часть синтезируемой САУ?
- 21. Что является основой для выбора элементов неизменяемой части функциональной схемы САУ?
- 22. Что является принципиальной основой структурного и параметрического синтеза идеальных систем управления?
- 23. Какие свойства автоматической системы принято рассматривать при оценке ее качества?
- 24. Какие показатели качества относятся к частотным показателям?
- 25. Какие показатели качества относятся к корневым показателям?
- 26. Какие еще существуют показатели качества кроме прямых, частотных и корневых?
- 27. По какой динамической характеристике системы оценивают прямые показатели качества?
- 28. Какие типовые регуляторы применяются для инерционных объектов без запаздывания 2-го и 3-го порядков?
- 29. Почему не применяются дифференциальные регуляторы?
- 30. К чему приводит увеличение постоянной интегрирования ПИ регулятора?
- 31. Современные ТП являются сложными объектами управления?
- 32. Какой элемент является основным узлом алгоритмической структуры АСУТП?
- 33. Какие задачи АСУТП выполняет информационная структура?
- 34. Укажите, как используется информация, передаваемая АСУТП на более высокий уровень управления?
- 35. Сколько основных признаков используется при классификации АСУТП?
- 36. Какой вид управления используется при работе установки по жесткой программе?
- 37. Укажите максимальное число уровней управления, используемых в АСУТП?
- 38. Какие алгоритмы управления используются на втором уровне функциональной структуры АСУТП?

- 39. По вектору каких параметров ТП оцениваются качественные показатели выпускаемой продукции?
- 40. Какое количество структур выделяется при рассмотрении АСУТП?
- 41. В каких случаях используется оптимизация статического режима работы ТП по модели с использованием системы управления, работающей по разомкнутому принципу?
- 42. Какая связь между переменными характеризует регрессионное уравнение?
- 43. Какие режимы работы ТП можно описать с помощью регрессионных уравнений?
- 44. В каких случаях для управления ТП необходимо использовать адаптивные модели?
- 45. Из каких соображений выбирается структура модели объекта?
- 46. В чем основное различие между односвязными и многосвязными объектами управления?
- 47. Какие задачи выполняет подсистема контроля?
- 48. В чем разница между циклическим и адресным опросом датчиков?
- 49. Что понимается под аналитической градуировкой датчиков?
- 50. Какой критерий оптимизации используется при аналитической градуировке датчиков с помощью полиномов наилучшего приближения?

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине по решению кафедры оформлен отдельным приложением к рабочей программе.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ «АЛГОРИТМИЗАЦИЯ И УПРАВЛЕНИЕ В ТЕХНИЧЕСКИХ СИСТЕМАХ»

Основная литература

- 1. Соснин, О.М. Основы автоматизации технологических процессов и производств/ О.М. Соснин.- М.: ИЦ Академия, 2007.
- 2. Автоматизированное управление технологическими процессами: Учеб. пособие/ Под ред. В.Б.Яковлева Л.: ЛГУ, 1988.
- 3. Макаров, В.Л. Алгоритмы управления в АСУТП/ В.Л. Макаров.- Учеб. пособие Л.: СЗПИ, 1983.

- 4. Карташов, Б.А. Компьютерные технологии и микропроцессорные средства в автоматическом управлении/ Б.А. Карташов. Ростов-н/Д: Феникс, 2013. –540с.
- 5. Харазов, В.Г. Интегрированные системы управления технологическими процессами/ В.Г. Харазов. СПб.: Профессия, 2009. 592 с.
- 6. Малков, А.В. Систем с распределенными параметрами Анализ и синтез /Малков А.В., Першин И.М. –Москва.: Научный мир,2012. 476 с.

Дополнительная литература

- 1. Роткоп, Л.Л. Автоматическое управление процессами массового производства/ Л.Л. Роткоп. М.: Машиностроение, 1972.
- 2.Ицкович, Э.Л. Контроль производства с помощью вычислительных машин/ Э.Л. Ицкович .– М.: Энергия, 1980.
- 3. Родионов, В. Д. Технические средства АСУТП: учеб. пособие для вузов/ В. Д. Родионов, В. А. Терехов, В. Б. Яковлев М.: Высш. шк., 2009. 262 с.
- 4. Пятибратов А.П., Гудыно Л.П., Кириченко А.А. Вычислительные системы, сети и телекоммуникации: Учебник М.: Финансы и статистика, 2011.-509 с

Программное обеспечение

- 1. ΠΠΠ MS Office 2010
- 2. Текстовый редактор Блокнот
- 3. Браузеры IE, Google Chrome, Opera и др.

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Электронная информационно-образовательная среда АНО ВПО "СЗТУ" (ЭИОС СЗТУ) [Электронный ресурс]. Режим доступа: http://edu.nwotu.ru/
- 2. Учебно-информационный центр АНО ВПО "СЗТУ" [Электронный ресурс]. Режим доступа: http://lib.nwotu.ru:8087/jirbis2/
- 3. Электронно-библиотечная система IPRbooks [Электронный ресурс]. Режим доступа: http://www.iprbookshop.ru/

- 4. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. Режим доступа: http://window.edu.ru/
- 5. Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН)[Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При изучении дисциплины используется балльно-рейтинговая технология, которая позволяет реализовать непрерывную и комплексную систему оценивания учебных достижений студентов. Непрерывность означает, что текущие оценки не усредняются, а непрерывно складываются на всем протяжении при изучении дисциплины в семестре. Комплексность означает учет всех форм учебной и творческой работы студента в течение семестра.

Балльно-рейтинговая технология, включает в себя два вида контроля: текущий контроль и промежуточная аттестация по дисциплине.

Лекционные занятия проводятся в форме контактной работы со студентами или с применением дистанционных образовательных технологий.

Практические занятия проводятся в форме контактной работы со студентами или с применением дистанционных образовательных технологий, в компьютерном классе либо в аудитории с мультимедийным оборудованием.

Контрольная работа выполняется студентом самостоятельно используя знания и практические навыки, полученные на лекциях, практических занятиях, в ходе выполнения лабораторных работ.

Консультирование студентов в процессе изучения дисциплины организуется кафедрой и осуществляется преподавателем в форме контактной работы со студентами с применением дистанционных образовательных технологий. Консультирование может осуществляться как в режиме on-line, так и заочно в форме ответов на вопросы студентов, направляемых преподавателю посредством размещения их в разделе «Консультации» в структуре изучаемой дисциплины в электронной информационно-образовательной среде (ЭИОС) университета.

Роль консультаций должна сводиться, в основном, к помощи в изучении дисциплины (модуля), выполнении лабораторных работ, контрольных раюот и курсовых работ (проектов).

Текущий контроль (ТК) - основная часть балльно-рейтинговая технологии, основанная на поэтапном контроле усвоения студентом учебного материала, выполнении индивидуальных заданий.

Форма контроля: тестовые оценки в ходе изучения дисциплины, оценки за выполнение индивидуальных заданий, лабораторных работ, контрольных работ курсовых работ (проектов).

Основная цель ТК: своевременная оценка успеваемости студентов, побуждающая их работать равномерно, исключая малые загрузки или перегрузки в течение семестра.

ТК осуществляется программными средствами ЭИОС в период самостоятельной работы студента по его готовности.

Оценивание учебной работы студента осуществляется в соответствии с критериями оценивания, определяемые балльно-рейтинговой системой (БРС) рабочей программы учебной дисциплины

По результатам ТК, при достаточной личной организованности и усердии, студенты имеют возможность получить оценку при промежуточной аттестации по итогам текущей успеваемости,

Промежуточная аттестация (ПА) - это проверка оценочными средствами уровня учебных достижений студентов по всей дисциплине за семестр.

Формы контроля: зачет или экзамен в виде многовариантного теста (до 35 заданий). Тесты формируются соответствующими программными средствами случайным образом из банка тестовых заданий по учебной дисциплине.

ПА осуществляется с применением дистанционных образовательных технологий.

Цель ПА: проверка базовых знаний дисциплины и практических навыков, полученных при изучении модуля (дисциплины) и уровня сформированности компетенций.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии:

1. Internet – технологии:

WWW (англ. World Wide Web – Всемирная Паутина) – технология работы в сети с гипертекстами;

FTP (англ. File Transfer Protocol – протокол передачи файлов) – технология передачи по сети файлов произвольного формата;

IRC (англ. Internet Relay Chat – поочередный разговор в сети, чат) – технология ведения переговоров в реальном масштабе времени, дающая возможность разговаривать с другими людьми по сети в режиме прямого диалога;

ICQ (англ. I seek you – я ищу тебя, можно записать тремя указанными буквами) – технология ведения переговоров один на один в синхронном режиме.

- 2. Дистанционное обучение с использованием ЭИОС на платформе Moodle.
 - 3. Технология мультимедиа в режиме диалога.
- 4. Технология неконтактного информационного взаимодействия (виртуальные кабинеты, лаборатории).
- 5. Гипертекстовая технология (электронные учебники, справочники, словари, энциклопедии) и т.д.

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

- 1. Библиотека.
- 2. Справочно-правовая система Консультант Плюс.
- 3. Электронная информационно-образовательная среда университета.
- 4. Локальная сеть с выходом в Интернет.

12. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНКИ ЗНАНИЙ

Формирование оценки текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины осуществляется с использованием балльно-рейтинговой оценки работы студента.

Вид учебной работы, за которую ставятся баллы	Баллы
Участие в online занятиях, прослушивание видео лекций	0 - 4
Контрольный тест к разделу 1	0 - 2
Контрольный тест к разделу 2	0 - 2
Контрольный тест к разделу 3	0 - 2
Контрольный тест к разделу 4	0 - 2
Контрольный тест к разделу 5	0 - 2
Контрольный тест к разделу 6	0 - 2
Контрольный тест к разделу 7	0 - 2
Контрольный тест к разделу 8	0 - 2
практическая работа 1	0 - 4
практическая работа 2	0 - 4
практическая работа 3	0 - 4
практическая работа 4	0 - 4
практическая работа 5	0 - 4
КОНТРОЛЬНАЯ РАБОТА	0 - 30
ИТОГОВЫЙ КОНТРОЛЬНЫЙ ТЕСТ	0 - 30
ВСЕГО	0 - 100

БОНУСЫ (баллы, которые могут быть добавлены до 100):	
	Баллы
- за активность	0 - 10
- за участие в ОЛИМПИАДЕ(в зависимости от занятого места)	0 - 50
- за участие в НИРС (в зависимости от работы)	0 - 50
- за оформление заявок на полезные модели (рац.предложения)	0 - 50

Оценка по контрольной работе

	Количество
Оценка	баллов
отлично	27 - 30
хорошо	23 - 26
удовлетворительно	18 - 22
неудовлетворительно	менее 18

Балльная шкала оценки

Оценка (экзамен)	Баллы
отлично	86 - 100
хорошо	69 – 85
удовлетворительно	51 – 68
неудовлетворительно	менее 51

Приложение к рабочей программе учебной дисциплины Алгоритмизация и управление в технических системах по направлению подготовки 27.03.04 Управление в технических системах

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. Перечень формируемых компетенций Общепрофессиональные (ОПК):

Код компетенции	Наименование и (или) описание компетенции
ОПК-9	способностью использовать навыки работы с компьютером, владеть методами информационных технологий, соблюдать основные требования информационной безопасности

Профессиональные (ПК):

Код компетенции	Наименование и (или) описание компетенции					
ПК-4	готовностью участвовать в подготовке технико-экономического обоснования проектов создания систем и средств автоматизации и управления					
ПК-5	способностью осуществлять сбор и анализ исходных данных для расчета и проектирования систем и средств автоматизации и управления					
ПК-17	готовностью производить инсталляцию и настройку системного, прикладного и инструментального программного обеспечения систем автоматизации и управления					

2. Паспорт фонда оценочных средств

№	Контролируемые модули	Код	Наименование		
п/п	(темы) дисциплины	контролируемой	оценочного средства		
		компетенции			
		(или ее части)			
1	Модуль 1. Общая	ОПК-9, ПК-4,	Контрольный тест к разделу 1		
	характеристика и основные	ПК-5, ПК-17	Контрольный тест к разделу 2		
	понятия теории управления		Контрольный тест к разделу 3		
	технологическими процессами				
2	Модуль 2. Алгоритмы	ОПК-9, ПК-4,	Контрольный тест к разделу 4		
	управления	ПК-5, ПК-17	Контрольный тест к разделу 5		
			Практическая работа № 1		
			Практическая работа № 2		
			Практическая работа № 3		
3	Модуль 3. Цифровые системы	ОПК-9, ПК-4,	Контрольный тест к разделу 6		
	управления	ПК-5, ПК-17	Контрольный тест к разделу 7		
			Лабораторная работа № 4		
4	Модуль 4. Моделирование	ОПК-9, ПК-4,	Контрольный тест к разделу 8		
	систем управления	ПК-5, ПК-17	Лабораторная работа № 5		
5	Модули 1-4	ОПК-9, ПК-4,	Контрольная работа;		
		ПК-5, ПК-17	Итоговый контрольный тест		

3.Показатели и критерии оценивания компетенций по этапам формирования

Этапы	Показатели достижения	Критерии оценивания результатов обучения					
освоения компете- нции	заданного уровня освоения компетенций	1	2	3	4	5	
Первый этап	Знать (ОПК-9, ПК-4, ПК-5, ПК-17): основные принципы автоматизированного управления, основы анализа объектов управления, основные алгоритмы контроля и управления, обеспечивающие оптимальное функционирование АСУТП.	Не знае т	Знает некоторые принципы автоматизиро ванного управления	Знает основные принципы автоматизиров анного управления, основы анализа объектов управления	Знает основные принципы автоматизирован ного управления, основы анализа объектов управления, но не знает некоторых основных алгоритмов контроля и управления, обеспечивающи х оптимальное функционирова ние АСУТП.	Знает основные принципы автоматизированн ого управления, основы анализа объектов управления, основные алгоритмы контроля и управления, обеспечивающие оптимальное функционирован ие АСУТП.	
Второй этап	Уметь (ОПК-9, ПК-4, ПК-5, ПК-17) применять полученные знания при использовании алгоритмов управления, самостоятельно применять основные положения теории к решению конкретных задач по автоматизированном у управлению технологическими процессами	Не уме ет	Ошибается в применении полученных знаний при использован ии алгоритмов управления	Умеет применять полученные знания при использовани и алгоритмов управления	Умеет применять полученные знания при использовании алгоритмов управления, самостоятельно применять основные положения теории к решению конкретных задач по автоматизирова нному управлению технологически ми процессами, но допускает ошибки в построении алгоритмов	Умеет применять полученные знания при использовании алгоритмов управления, самостоятельно применять основные положения теории к решению конкретных задач по автоматизирован ному управлению технологическим и процессами	

	Владеть	Не	Частично	Владеет	Уверенно	Владеет
	((ОПК-9, ПК-4,	вла-	владеет	основными	владеет	методами
	ПК-5, ПК-17):	деет	методами	методами	методами	разработки
	методами разработки		разработки	разработки	разработки	алгоритмов
	алгоритмов контроля		алгоритмов	алгоритмов	алгоритмов	контроля и
	и управления для		контроля и	контроля и	контроля и	управления для
	технологических		управления	управления для	управления для	технологических
	процессов с			технологическ	технологических	процессов с
	различными уровнями			их процессов с	процессов с	различными
Третий	автоматизации,			различными	различными	уровнями
этап	умением проводить			уровнями	уровнями	автоматизации,
Fian	расчет настроек			автоматизации,	автоматизации,	умением
	непрерывных и			но не умеет	умением	проводить расчет
	дискретных			проводить	проводить расчет	настроек
	регуляторов			расчет	настроек	непрерывных и
				настроек	непрерывных и	дискретных
				непрерывных и	дискретных	регуляторов
				дискретных	регуляторов, но	
				регуляторов	допускает	
					ошибки в	
					расчетах	

4.Шкалы оценивания (балльно-рейтинговая система)

Вид учебной работы, за которую ставятся баллы				
Участие в online занятиях, прослушивание видео лекций	0 - 4			
Контрольный тест к разделу 1	0 - 2			
Контрольный тест к разделу 2	0 - 2			
Контрольный тест к разделу 3	0 - 2			
Контрольный тест к разделу 4	0 - 2			
Контрольный тест к разделу 5	0-2			
Контрольный тест к разделу 6	0 - 2			
Контрольный тест к разделу 7	0 - 2			
Контрольный тест к разделу 8	0 - 2			
практическая работа 1	0 - 4			
практическая работа 2	0 - 4			
практическая работа 3	0 - 4			
практическая работа 4	0 - 4			
практическая работа 5	0 - 4			
КОНТРОЛЬНАЯ РАБОТА	0 - 30			
ИТОГОВЫЙ КОНТРОЛЬНЫЙ ТЕСТ	0 - 30			
ВСЕГО	0 - 100			

БОНУСЫ (баллы, которые могут быть добавлены до 100):	
	баллы
- за активность	0 - 10
- за участие в ОЛИМПИАДЕ(в зависимости от занятого места)	0 - 50
- за участие в НИРС (в зависимости от работы)	0 - 50
- за оформление заявок на полезные модели (рац.предложения)	0 - 50

Балльная шкала оценки

Оценка (экзамен)	Баллы
отлично	86 – 100
хорошо	69 – 85
удовлетворительно	51 – 68
неудовлетворительно	менее 51

5. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций при изучении учебной дисциплины в процессе освоения образовательной программы

5.1.Типовой вариант задания на контрольную работу

Состояние объекта описывается уравнением регрессии вида:

$$Y1 = 81U_1 + 136U_2 - 363U_3 - 334Z_1 + 330Z_2 + 6059 >= b_1;$$

$$Y2 = 10.5U_1 + 7.5U_2 - 2.5U_3 + 3.8Z_2 + 134.5 >= b_2;$$

$$Y_3 = 148 U_1 + 153 U_2 + 300 U_3 + 733 >= b_3$$

где U_1, U_2, U_3 — переменные управления,

 ${\bf Z}_1, {\bf Z}_2$ — контролируемые возмущения.

Требуется синтезировать программу управлений

 $U_1(Z_2)$, $U_2(Z_2)$, $U_3(Z_2)$ при $Z_1 = const$, обеспечивающую максимум критерия качества

$$J = 59,21 - 6,25 U_1 - 5,1 U_2 + 1,32 U_3 - 3,45 Z_2$$

при ограничениях на управления и возмущения

$$0 < U_1 < 1$$
; $0 < U_2 < 1$; $0 < U_3 < 1$; $0 < Z_1 < 1$; $0 < Z_2 < 1$.

Данные для расчета приведены в табл. 2.

Таблица 2

Исходные	Варианты									
данные	0	1	2	3	4	5	6	7	8	9
\mathbf{Z}_1	0,2	0,2	0,4	0,4	0,6	0,6	0,8	0,8	1,0	1,0
b 1	6059	5792	6059	5792	6059	5792	6059	5792	6059	5792
b ₂	126	140	126	140	126	140	126	140	126	140
b 3	900	1000	900	1000	900	1000	900	1000	900	1000

5.2.Типовой тест

- 1. Какие алгоритмы управления используются на втором уровне функциональной структуры АСУТП?
- а. Алгоритмы программного управления
- b. Алгоритмы стабилизации
- с. Алгоритмы оптимизации

Ы	А пго	ритмы	конт	ησισ
u.	$A_{\rm JH}$ O	ритмы	KUHI	киоч

- 2. В каких случаях для управления ТП необходимо использовать адаптивные модели?
- а. Параметры ТП меняются во времени
- b. ТП описывается нелинейными уравнениями
- с. В ТП присутствуют неконтролируемые возмущения
- d. ТП описывается линейными уравнениями
- 3. Укажите максимальное число уровней управления, используемых в АСУТП.
- a. 5
- b. 2
- c. 3
- d. 4
- 4. Какие режимы работы ТП можно описать с помощью регрессионных уравнений?
- а. Статический режим
- b. Переходной режим
- с. Динамический режим
- d. Пусковой режим
- 5. Укажите как используется информация, передаваемая АСУТП на более высокий уровень управления?
- а. Для решения задач оптимизации ТП
- b. Для задач управления TП
- с. Для решения организационно-экономических задач
- d. Для решения задач контроля
- 6. Из каких соображений выбирается структура модели объекта?
- а. По статическим и динамическим характеристикам объекта
- b. По внешнему виду объекта
- с. По динамическим характеристикам объекта
- d. По статическим характеристикам объекта
- 7. В чем основное различие между односвязными и многосвязными объектами управления?
- а. По динамическим характеристикам
- Б. По количеству входов и выходов
- с. По временным характеристикам
- d. По статическим характеристикам
- 8. Сколько основных признаков используется при классификации АСУТП?
- a. 4
- b. 5
- c. 3
- d. 2
- 9. Какое количество структур выделяется при рассмотрении АСУТП?
- a. 4
- b. 5
- c. 3
- d. 2

- 10. В каких случаях используется оптимизация статического режима работы ТП по модели с использованием системы управления, работающей по разомкнутому принципу?
- а. Когда процесс нестационарен
- b. Когда ТП стационарен и все возмущения контролируются
- с. Когда ТП описывается нелинейными уравнениями
- d. Когда ТП стационарен и имеются неконтролируемые возмущения

6. Методические указания по организации процесса тестирования

- 6.1.Итоговый контрольный тест доступен студенту только во время тестирования, согласно расписания занятий или в установленное проректором по УМР время.
- 6.2.Студент информируется о результатах текущей успеваемости.
- 6.3.Студент получает информацию о текущей успеваемости, начислении бонусных баллов и допуске к процедуре итогового тестирования от преподавателя или в ЭИОС.
- 6.4. Производится идентификация личности студента.
- 6.5.Студентам, допущенным к промежуточной аттестации, открывается итоговый контрольный тест.
- 6.6.Тест закрывается студентом лично по завершении тестирования или автоматически по истечении времени тестирования.