Автономная некоммерческая организация высшего образования

«СЕВЕРО-ЗАПАДНЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Рабочая программа дисциплины

«ТЕОРЕТИЧЕСКАЯ МЕХАНИКА»

Направление подготовки: 23.03.03 - Эксплуатация транспортно-

технологических машин и комплексов

Профиль подготовки: 23.03.03.01 Автомобили и автомобильное

хозяйство

Квалификация (степень): бакалавр

Форма обучения: заочная

Санкт-Петербург 2018 Рабочая программа дисциплины «Теоретическая механика» разработана: в соответствии с требованиями ФГОС ВО по направлению 23.03.03 — «Эксплуатация транспортно-технологических машин и комплексов».

Основным документом для разработки рабочей программы является рабочий учебный план направления 23.03.03 — «Эксплуатация транспортнотехнологических машин и комплексов» и профиль подготовки: Автомобили и автомобильное хозяйство

Учебные и методические материалы по учебной дисциплине размещены в электронной информационно-образовательной среде университета.

Разработчик:

П.А. Красножон, кандидат технических наук, доцент

Рецензент: В.В. Курлов, ЧОУ ВО «СПБИЭУ», доцент кафедры гуманитарных, математических и естественнонаучных дисциплин, к.т.н., доцент.

Рабочая программа рассмотрена на заседании кафедры Машиностроения и металлургии от «12» сентября 2018 года, протокол № 1.

СОДЕРЖАНИЕ

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ,	
СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ	
ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	5
3. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ	5
4. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ	
САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	11
5.1. Темы контрольной работы	11
5.2. Темы курсовых работ (проектов)	11
5.3. Перечень методических рекомендаций	11
5.4. Перечень вопросов для подготовки к экзамену	11
6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ	
АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	13
7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ,	
НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	13
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ	
СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	14
9. МЕТОДИЧЕСКИЕ УКАЗАНИЯДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ	
ДИСЦИПЛИНЫ	14
10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ	
ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	15
11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ	
ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	16
12. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНКИ ЗНАНИЙ	16
Приложение	18

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- 1.1. Целями освоения дисциплины «**Теоретическая механика**» являются: формирование у студентов теоретической и практической подготовки в области технологии транспортных процессов в степени, необходимой для приведения имеющейся механической системы к ее расчетной модели.
- 1.2. Изучение дисциплины «**Теоретическая механика**» способствует решению следующих задач профессиональной деятельности:
 - подготовка к изучению общеинженерных и специальных дисциплин;
- раскрытие роли теоретической механики как базы инженерного образования.
- 1.3. Процесс изучения дисциплины направлен на формирование следующих компетенций:

профессиональные (ПК):

Код компетенции	Наименование и (или) описание компетенции
ПК-10	Способностью выбирать материалы для применения при эксплуатации и ремонте транспортных, транспортнотехнологических машин и оборудования различного назначения с учетом влияния внешних факторов и требований безопасной, эффективной эксплуатации и стоимости.

1.4. В результате освоения дисциплины студент должен:

Знать:

- - основные понятия и аксиомы механики;
- - основные операции с системами сил, действующими на твердое тело;
- - условия эквивалентности систем сил;
- - условия уравновешенности произвольной системы сил и основные частные случаи этих условий;
- законы трения скольжения и трения качения;
- кинематические характеристики движения точки при различных способах задания движения;
- кинематические характеристики движения твердого тела и его отдельных точек при различных видах движения тела;
- операции со скоростями и ускорениями при сложном движении точки;
- приемы интегрирования дифференциальных уравнений движения точки;

• теоремы об изменении количества движения, кинетического момента и кинетической энергии системы.

Уметь:

- составлять уравнения равновесия для твердого тела, находящегося под действием произвольной системы сил;
- вычислять скорости и ускорения точек твердых тел, совершающих поступательное, вращательное или плоское движения;
- вычислять кинетическую энергию многомассовой системы;
- вычислять работу сил, приложенных к твердому телу, при его поступательном, вращательном и плоском движениях.

Владеть:

- методами составления уравнений равновесия твердого тела и системы твердых тел;
- методами кинематического анализа твердого тела при его поступательном, вращательном и плоском движениях.
- методами составления дифференциальных уравнений движения систем твердых тел при их поступательном, вращательном и плоском движениях.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Теоретическая механика» относится к базовой части блока1 (Б1).

Она основывается на знаниях, полученных в предшествующих дисциплинах «Математика», «Физика». Освоение дисциплины необходимо как предшествующее для дисциплин «Детали машин и основы конструирования», «Сопротивление материалов".

3. ОБЪЕМ ДИСЦИПЛИНЫ В ЗАЧЕТНЫХ ЕДИНИЦАХ

		छं Виды занятий			занятий			
№ п/п	Наименование модулей и номера тем учебной дисциплины	Трудоёмкость по учебному плану (час/з.е.)	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа	Контрольная работа	Зачёт (экзамен)
	Модуль 1. Статика	24/0,66	1	2		21		
1	Тема 1.1. Введение в механику	6/0,16	1			5		
2	Тема 1.2. Моменты силы. Пара сил	6/0,16		1		5		
3	Тема 1.3. Произвольная система сил	6/0,16				6		
4	Тема 1.4. Плоская система сил	6/0,16		1		5	Задача №1	
	Модуль 2. Кинематика	24/0,7	1	2		21		

5	Тема 2.1. Кинематика точки	6/0,16				6	Задача №2	
6	Тема 2.2. Простейшие движения твердого тела	6/0,16	0,5	1		4,5		
7	Тема 2.3. Плоское движение твердого тела	6/0,16		1		5	Задача №3	
8	Тема 2.4. Сложное движение точки	6/0,16	0,5			5,5	Задача №4	
	Модуль 3. Динамика	60/1,6	3	2	2	53		
9	Тема 3.1. Динамика материальной точки	8/0,2	1			7	Задача №5	
10	Тема 3.2. Прямолинейные колебания материальной точки	8/0,2		1	2	5		
11	Тема 3.3. Теоремы об изменении количества движения и о движении центра масс механической системы	8/0,2	1			7	Задача №6	
12	Тема 3.4. Теорема об изменении кинетического момента механической системы	8/0,2				8		
13	Тема 3.5. Теорема об изменении кинетической энергии механической системы	8/0,2	1	1		6	Задача №7	
14	Тема 3.6. Аналитическая механика	20/0,6				20	Задача №8	
	Всего	144/4	4	6	2	132	1	Экз.

4. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Модуль 1. Статика (36 часов)

Тема 1.1. Введение в механику (9 часов)

Предмет механики. Теоретическая механика и ее место среди естественных наук. Механика как теоретическая база ряда областей современной техники. Основные понятия механики. Материальная точка, механическая система, абсолютно твердое тело. Сила, система сил. Основные законы механики. Свободные и несвободные тела. Связи и реакции связей. Принцип освобождаемости от связей. Принцип отвердевания. Проекции вектора на координатные оси.

Виды учебных занятий:

Лекция:

Введение в механику

1час

Тема 1.2. Моменты силы. Пара сил (9 часов)

Момент силы относительно точки как алгебраическая величина и как вектор. Момент силы относительно оси; его связь с вектором-моментом силы относительно точки, лежащей на этой оси. Аналитические выражения моментов силы относительно координатных осей. Пара сил. Момент пары как алгебраическая величина и как вектор. Свойства пары сил.

Виды учебных занятий:

Практическое занятие: Понятие силы, момента силы относительно

точки и оси. Методы определения моментов

1час

1 час

сил относительно точки оси. Пара сил.

Момент пары

Тема 1.3. Произвольная система сил (9 часов)

Приведение силы к данному центру. Приведение произвольной системы сил к данному центру. Главный вектор и главный момент системы сил; их свойства. Условия и уравнения равновесия произвольной системы сил, случай параллельных сил, случай сходящихся сил.

Тема 1.4. Плоская система сил (9 часов)

Три формы уравнений равновесия плоской системы сил; случай параллельных сил; случай сходящихся сил. Статически определенные и статически неопределенные системы сил. Равновесие системы тел. Метод расчленения. Закон Кулона о силе трения скольжения. Коэффициент трения скольжения. Равновесие при наличии трения скольжения. Трение качения. Пара трения качения, ее момент, коэффициент трения качения.

Виды учебных занятий:

Практическое занятие: Система сил. Плоская система сил. Сумма

сил – главный вектор. Главный момент.

Уравнения равновесия. Системы сходящихся

и параллельных сил, их уравнения

равновесия.

Модуль 2. Кинематика (36 часов)

Тема 2.1. Кинематика точки (9 часов)

Предмет кинематики. Способы задания движения точки: векторный, координатный и естественный. Связь между различными способами задания движения точки. Траектория точки. Определение скорости точки при различных способах задания ее движении. Определение ускорения точки при векторном и координатном способах задания ее движения. Естественные оси и их орты. Разложение вектора ускорения точки на касательное и нормальное ускорения. Частные случаи движения точки.

Тема 2.2. Простейшие движения твердого тела (9 часов)

Поступательное движение твердого тела. Определение траектории, скорости и ускорения точек твердого тела при его поступательном движении. Вращение твердого тела вокруг неподвижной оси; угол поворота тела вокруг неподвижной оси. Уравнение вращения твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение твердого тела, вращающегося вокруг неподвижной оси; векторы угловой скорости и углового ускорения тела.

Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси. Выражения для скорости, касательного и нормального ускорений точек вращающегося тела в виде векторных произведений.

Виды учебных занятий:

Практическое занятие: Поступательное движение тела.

1 час

Вращательное движение тела. Уравнение вращательного движения. Кинематические характеристики вращающегося тела как единого целого. Кинематические

характеристики отдельных точек

вращающегося тела.

Тема 2.3. Плоское движение твердого тела (9 часов)

Определение и общие свойства плоского движения твердого тела. Уравнения движения плоской фигуры. Разложение движения плоской фигуры на поступательное вместе с полюсом и вращательное вокруг полюса. Скорость точки плоской фигуры как геометрическая сумма скорости полюса и скорости этой точки во вращении фигуры вокруг полюса. Теорема о проекциях скоростей двух точек плоской фигуры на ось, проходящую через эти точки. Мгновенный центр скоростей плоской фигуры и способы определения его положения в частных случаях. Ускорение точки плоской фигуры как геометрическая сумма ускорения полюса и ускорения этой точки во вращательном движении вокруг полюса.

Виды учебных занятий:

Практическое занятие: Скорость точки плоской фигуры как

1час

геометрическая сумма скорости полюса и скорости этой точки во вращении фигуры вокруг полюса. Теорема о проекциях скоростей двух точек. Мгновенный центр скоростей плоской фигуры и способы его определения. Ускорение точки плоской фигуры.

Тема 2.4. Сложное движение точки (9 часов)

Относительное, переносное и абсолютное движения точки; относительные, переносные и абсолютные скорости и ускорения. Теорема сложения скоростей точки. Теорема сложения ускорений точки (теорема Кориолиса). Поворотное ускорение (ускорение Кориолиса): его модуль, направление и физический смысл. Случай поступательного переносного движения.

Виды учебных занятий:

Лекция: Сложное движение точки

1час

Модуль 3. Динамика (72 час)

Тема 3.1. Динамика материальной точки (9 часов)

динамики. Дифференциальные уравнения движения материальной точки в проекциях на декартовы и естественные оси. Две основные задачи динамики точки. Примеры решения задач динамики точки. Определение постоянных интегрирования ПО начальным условиям. Уравнения динамики относительного движения точки. Переносная и кориолисова силы инерции. Частные случаи относительного движения и относительного равновесия точки. Принцип относительности классической механики.

Виды учебных занятий:

Лекция: Дифференциальные уравнения движения 1час материальной точки

Тема 3.2. Прямолинейные колебания материальной точки (9 часов)

Прямолинейное колебательное движение точки при линейной восстанавливающей силе. Свободные гармонические колебания точки: частота, период, амплитуда, фаза. Свободные затухающие колебания точки при силе сопротивления, пропорциональной первой степени скорости: частота, период, декремент колебаний. Вынужденные колебания точки под действием гармонической возмущающей силы. Случай резонанса. Амплитудно-частотные и фазово-частотные характеристики. Вынужденные колебания точки в случае отсутствия сопротивления.

Виды учебных занятий:

Практическое Прямолинейные колебания при линейной 1час занятие: восстанавливающей силе. Свободные гармонические колебания. Частота, период, Свободные затухающие амплитуда, фаза. колебания. Частота, период, декремент колебаний. Вынужденные колебания. Резонанс, амплитудно-частотные характеристики.

Лабораторная "Исследование свободных колебаний при 2 работа вязком сопротивлении, пропорциональном часа первой степени скорости"

Тема 3.3. Теоремы об изменении количества движения и о движении центра масс механической системы (9 часов)

Механическая система. Классификация сил, действующих на точки системы: внешние и внутренние силы, активные силы и реакции связей. Равенство нулю главного вектора и главного момента внутренних сил системы. Уравнения динамики механической системы. Меры движения. Количество движения материальной точки и системы. Импульс силы.

Теорема об изменении количества движения материальной точки. Теорема об изменении количества движения системы в дифференциальной и конечной формах, а также следствия из нее. Центр масс механической системы и формулы, определяющие его положение. Понятие о центре тяжести. Теорема о движении центра масс системы и следствия из нее. Дифференциальные уравнения движения центра масс системы. Выражение количества движения системы через ее массу и скорость центра масс.

Виды учебных занятий:

Лекция: Введение в динамику. Теоремы об изменении 1час

количества движения системы и о движении центра

масс системы

3.4. Теорема об изменении кинетического момента механической системы (9 часов)

Момент количества движения материальной точки относительно центра и оси. Кинетический момент системы относительно центра и оси. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси. Момент инерции твердого тела относительно оси; радиус инерции. Зависимость между моментами инерции твердого тела относительно параллельных осей. Центральные оси. Теорема об изменении кинетического момента механической системы относительно неподвижных центра и оси, а также следствия из нее. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси. Момент инерции тела как мера его инертности при вращательном движении.

Тема 3.5. Теорема об изменении кинетической энергии системы (9 часов)

Кинетическая энергия материальной точки и механической системы. Теорема Кенига. Вычисление кинетической энергии твердого тела при его поступательном, вращательном вокруг неподвижной оси и плоском движениях. Элементарная работа силы. Работа силы на конечном перемещении. Работа равнодействующей. Мощность силы. Работа силы тяжести, силы упругости. Работа и мощность сил, приложенных к твердому телу, при его вращении вокруг неподвижной оси. Теорема об изменении кинетической энергии механической системы. Понятие о силовом поле. Потенциальное силовое поле. Потенциальная энергия. Работа силы на конечном перемещении в потенциальном поле. Потенциальная энергия системы. Консервативная механическая система. Закон сохранения полной механической энергии.

Виды учебных занятий:

Практическое занятие:

Работа и мощность силы. Элементарная работа 1 силы, работа силы на конечном перемещении. Кинетическая энергия точки и системы. Теорема об изменении кинетической энергии. Потенциальная энергия. Закон сохранения механической энергии.

Тема 3.6. Аналитическая механика (20 часов)

Связи и их аналитические выражения, классификация связей. Число степеней свободы. Обобщенные координаты. Возможные перемещения. Возможная работа, обобщенные силы. Принцип возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа второго рода.

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

5.1. Темы контрольной работы

Номер и название модуля (темы)	Наименование тем задач контрольной работы	Номер задач контр. работы
Модуль 1. Статика	Плоская система сил	Задача №1
Модуль 2. Кинематика	Кинематика точки	Задача №2
	Плоское движение твердого тела	Задача №3
	Сложное движение точки	Задача №4
Модуль 3. Динамика	Динамика материальной точки	Задача №5
	Теоремы об изменении количества движения и о движении центра масс механической системы. Теорема об изменении кинетического момента механической системы	Задача №6
	Теорема об изменении кинетической энергии	Задача №7
	Аналитическая механика	Задача №8

5.2. Темы курсовых работ (проектов)

Курсовая работа учебным планом не предусмотрена.

5.3. Перечень методических рекомендаций

<u>№</u> п/п	Наименование
1	Методические рекомендации по выполнению лабораторных работ
2	Методические рекомендации по выполнению контрольной работы

5.4. Перечень вопросов для подготовки к экзамену

- 1. Основные законы механики Галилея-Ньютона. Инерциальные системы отсчета.
- 2. Уравнение динамики материальной точки в проекциях на декартовы и естественные оси. Две основные задачи динамики точки; методы их решения.

- 3. Свободные гармонические колебания материальной точки при линейной восстанавливающей силе; частота, <u>период</u>, амплитуда и фаза этих колебаний.
- 4. Свободные затухающие колебания материальной точки при силе сопротивления, пропорциональной ее скорости; частота, <u>период</u>, фаза, декремент этих колебаний.
- 5. Вынужденные колебания материальной точки при гармонической возмущающей силе и силе сопротивления, пропорциональной скорости точки.
- 6. Амплитуда вынужденных колебаний точки. Амплитудно-частотные и фазово-частотные характеристики. Случай резонанса.
- 7. Уравнения динамики относительного движения материальной точки. Случай относительного равновесия точки.
- 8. Инерциальные системы отсчета. Принцип относительности классической механики.
- 9. Механическая система. Классификация сил действующих на точки системы. Равенство нулю главного вектора и главного момента внутренних сил, действующих на точки системы.
- 10. Центр масс механической системы. Теорема о движении центра масс системы и следствия из нее.
- 11. Количество движения материальной точки и механической системы. Импульс силы.
- 12. Теоремы об изменении количества движения материальной точки и механической системы. Следствия.
- 13. Момент количества движения материальной точки и кинетический момент системы относительно центра и оси.
- 14. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси. Момент инерции твердого тела относительно оси; радиус инерции. Зависимость между моментами инерции тела относительно параллельных осей.
- 15. Теоремы об изменении кинетического момента материальной точки и механической системы относительно неподвижных центра и оси.
- 16. Кинетическая энергия материальной точки, механической системы, твердого тела. Теорема Кенига.
- 17. Элементарная и конечная работа силы. Работа равнодействующей. Мощность силы.
- 18. Работа силы тяжести и силы упругости.
- 19. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
- 20. Теоремы об изменении кинетической энергии материальной точки и механической системы. Следствия.
- 21.Потенциальное силовое поле. Потенциальная энергия. Поверхности уровня. Работа потенциальной силы при перемещении материальной точки в потенциальном силовом поле.
- 22. Консервативная механическая система. Закон сохранения полной

- механической энергии.
- 23. Связи и их аналитические выражения. Классификация связей.
- 24. Число степеней свободы. Обобщенные координаты.
- 25. Возможные перемещения материальной точки и механической системы. Идеальные связи.
- 26. Возможная работа, обобщенные силы. Способы вычисления обобщенных сил.
- 27. Принцип возможных перемещений.
- 28.Общее уравнение динамики.
- 29. Уравнения Лагранжа второго рода.
- 30. Функция Лагранжа. Уравнение Лагранжа второго рода для консервативных систем.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине по решению кафедры оформлен отдельным приложением к рабочей программе.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

а) основная литература

- 1. Козинцева С. В. Теоретическая механика [Электронный учебник] : Учебное пособие / Козинцева С. В., 2012, Ай Пи Эр Медиа Режим достпа: http://iprbookshop.ru/728
- 2. Шнеерсон Е. 3. Теоретическая механика [Электронный учебник] : Раздел «Динамика» Динамика материальной точки, общие теоремы динамики, удар Учебное пособие / Шнеерсон Е. 3., 2013, Российский государственный гидрометеорологический университет. 70 с. Режим доступа: http://iprbookshop.ru/14916
- 3. Щербакова Ю. В. Теоретическая механика [Электронный учебник] : Учебное пособие / Щербакова Ю. В., 2012, Научная книга Режим доступа: http://iprbookshop.ru/6345

б) дополнительная литература

- 1. Красюк А.М. Сборник заданий для расчетно-графических работ по теоретической механике [Электронный ресурс]: учебное пособие/ Красюк А.М., Рыков А.А.— Электрон. текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2013.— 164 с.— Режим доступа: http://www.iprbookshop.ru/45433.html
- 2. Гидаспов И. А. Теоретическая механика : учеб. пособие. Ч. 2 : Динамика, 2010. 221 с.
- 3. Диевский В. А. Теоретическая механика: сб. заданий, учеб. пособие для вузов / В. А. Диевский, И. А. Малышева, 2007, Лань. 190, [1] с.

- 4. Диевский В. А. Теоретическая механика: учеб. пособие для вузов / В. А. Диевский, 2009, Лань. 319, [1] с.
- 5. Красножон П. А. Теоретическая механика : письменные лекции / П. А. Красножон, А. П. Михеев, 2011, Изд-во СЗТУ. 260 с.
- 6. Теоретическая механика : учеб.-метод. комплекс / сост.: А. П. Михеев, П. А. Красножон, 2008, Изд-во СЗТУ. 241 с.
- 7. Теоретическая механика, ч.3 : учеб.-метод. комплекс / сост.: П. А. Красножон, А. П. Михеев, 2009, Изд-во СЗТУ. 108 с.

Программное обеспечение

- 1. ППП MS Office 2016
- 2. Текстовый редактор Блокнот
- 3. Браузеры IE, Google Chrome, Mozilla Firefox

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Электронная информационно-образовательная среда АНО ВО "СЗТУ" (ЭИОС СЗТУ) [Электронный ресурс]. Режим доступа: http://edu.nwotu.ru/
- 2. Электронная библиотека АНО ВО "СЗТУ" [Электронный ресурс]. Режим доступа: http://lib.nwotu.ru:8087/jirbis2/
- 3. Электронно-библиотечная система IPRbooks [Электронный ресурс]. Режим доступа: http://www.iprbookshop.ru/
- 4. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. Режим доступа: http://window.edu.ru/
- 5. Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН)[Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, лабораторные занятия, контрольную работу, самостоятельную работу студента, консультации.

9.1. При изучении тем из модулей 1-3 студентам необходимо повторить лекционный учебный материал, изучить рекомендованную литературу, а также учебный материал, находящийся в указанных информационных ресурсах.

На завершающем этапе изучения каждого модуля необходимо, воспользовавшись предложенными вопросами для самоконтроля, размещенными в электронной информационной образовательной среде

(ЭИОС), проверить качество усвоения учебного материала.

- В случае затруднения в ответах на поставленные вопросы рекомендуется повторить учебный материал.
- 9.2. После изучения каждого модуля дисциплины необходимо ответить на вопросы контрольного теста по данному модулю с целью оценивания знаний и получения баллов
- 9.3. При изучении модуля 1 следует выполнить задание 1 контрольной работы, руководствуясь методическими рекомендациями по ее выполнению.
- 9.4. При изучении модуля 2 следует выполнить задание 2, 3 и 4 контрольной работы, руководствуясь методическими рекомендациями по ее выполнению.
- 9.5. При изучении модуля 3 следует выполнить задание 5, 6, 7 и 8 контрольной работы, руководствуясь методическими рекомендациями по ее выполнению.
- 9.6. При изучении модуля 3 следует выполнить задание 5, 6, 7 и 8 контрольной работы, руководствуясь методическими рекомендациями по ее выполнению.
- 9.7. По завершению изучения учебной дисциплины в семестре студент обязан пройти промежуточную аттестацию. Вид промежуточной аттестации определяется рабочим учебным планом. Форма проведения промежуточной аттестации компьютерное тестирование с использованием автоматизированной системы тестирования знаний студентов в ЭИОС.
- 9.8. К промежуточной аттестации допускаются студенты, выполнившие требования рабочего учебного плана.

9.9. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости, по личному заявлению, осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии:

10.1. Internet – технологии:

(WWW(англ. World Wide Web – Всемирная Паутина) – технология работы в сети с гипертекстами;

FTP (англ. File Transfer Protocol – протокол передачи файлов) – технология передачи по сети файлов произвольного формата;

IRC (англ. Internet Relay Chat – поочередный разговор в сети, чат) – технология ведения переговоров в реальном масштабе времени, дающая возможность разговаривать с другими людьми по сети в режиме прямого диалога;

ICQ (англ. I seek you – я ищу тебя, можно записать тремя указанными буквами) – технология ведения переговоров один на один в синхронном режиме.

10.2. Дистанционное обучение с использованием ЭИОС на платформе Moodle.

- Технология мультимедиа в режиме диалога.
- Технология неконтактного информационного взаимодействия (виртуальные кабинеты, лаборатории).
- Гипертекстовая технология (электронные учебники, справочники, словари, энциклопедии).

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

- 1.Виртуальные аналоги специализированных кабинетов и лабораторий.
- 2.Библиотека.
- 3.Справочно-правовая система Консультант Плюс.
- 4. Электронная информационно-образовательная среда университета.
- 5. Локальная сеть с выходом в Интернет.

12. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНКИ ЗНАНИЙ

Формирование оценки текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины осуществляется с использованием балльно-рейтинговой оценки работы студента.

Вид учебной работы, за которую ставятся баллы	Баллы
Участие в online занятиях, прослушивание видео лекций	0 - 5
Лабораторная работа	0 - 15
Тест по модулю 1	0 - 6
Тест по модулю 2	0 - 7
Тест по модулю 3	0 - 7
Контрольная работа	0 - 30
Итого за учебную работу	0 - 70
Промежуточная аттестация	0 - 30
Всего	0 - 100

БОНУСЫ (баллы, которые могут быть добавлены до 100)	Баллы
- за активность	0 - 10
- за участие в олимпиаде	0 - 50
- за участие в НИРС	0 - 50
- за оформление заявок на полезные методы (рацпредложения)	0 - 50

Оценка по контрольной работе

	Количество
Оценка	баллов
отлично	27 - 30
хорошо	23 - 26
удовлетворительно	18 - 22
неудовлетворительно	менее 18

Балльная шкала оценки

Оценка (экзамен)	Баллы
отлично	86 - 100
хорошо	69 – 85
удовлетворительно	51 – 68
неудовлетворительно	менее 51

Приложение

к рабочей программе дисциплины «Теоретическая механика» по направлению подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. Перечень формируемых компетенций

профессиональные (ПК):

npowecenomiconoic (1111).					
Код компетенции	Наименование и (или) описание компетенции				
ПК-10	Способностью выбирать материалы для применения при эксплуатации и ремонте транспортных, транспортно-технологических машин и оборудования различного назначения с учетом влияния внешних факторов и требований безопасной, эффективной эксплуатации и стоимости.				

2. Паспорт фонда оценочных средств

№ п/п	Контролируемые модули (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Модуль 1. Статика	ПК-10	Тест по модулю 1
2	Модуль 2. Кинематика	ПК-10	Тест по модулю 2
3	Модуль 3. Динамика	ПК-10	Тест по модулю 3
4	Модули 1 - 3	ПК-10	Лабораторная работа
			Контрольная работа;
			Итоговый контрольный тест

3. Показатели и критерии оценивания компетенций по этапам формирования

Этапы освоения	Показатели достижения	Критерии оценивания результатов обучения				
компете- нции	заданного уровня освоения компетенций	1	2	3	4	5
	Знать (ПК-10): основные понятия	Не знает	Знает основные	Знает основные	Знает основные	Знает основные понятия и
Первый этап	и аксиомы механики;	snaci	понятия и аксиомы	понятия и аксиомы	понятия и аксиомы	аксиомы механики;
	основные операции с		механики; Не знает	механики; основные	механики; основные	основные операции с
	системами сил, действующими на твердое тело;		основные операции с	операции с системами сил,	операции с системами сил,	системами сил, действующими на твердое тело;
	условия эквивалентности		системами сил,	действующи ми на твердое	действующи ми на	условия эквивалентности
	систем сил; условия		действую шими на	тело;	твердое тело;	систем сил;
	уравновешенности произвольной		твердое тело;	условия эквивалентно сти систем	условия эквивалентно сти систем	условия уравновешенности произвольной
	системы сил и		условия	сил;	сил;	системы сил и

	основные частные		эквивален	условия	усповия	основные частные
				-	условия	
	случаи этих		тности	уравновешен	уравновешен	случаи этих условий;
	условий;		систем	ности	ности	_ =
	законы трения		сил;	произвольной	произвольно	законы трения
	скольжения и			системы сил	й системы	скольжения и
	трения качения;			и основные	сил и	трения качения;
	кинематические			частные	основные	кинематические
	характеристики			случаи этих	частные	характеристики
	движения точки			условий;	случаи этих	движения точки
	при различных				условий;	при различных
	способах задания				законы	способах задания
	движения;				трения	движения;
	кинематические				скольжения и	кинематические
	характеристики				трения	характеристики
	движения				качения;	движения
	твердого тела и				кинематичес	твердого тела и
	его отдельных				кие	его отдельных
	точек при				характеристи	точек при
	различных видах				ки движения	различных видах
	движения тела;				точки при	движения тела;
	операции со				различных	операции со
	скоростями и				способах	скоростями и
	ускорениями при				задания	ускорениями при
	сложном				движения;	сложном
	движении точки;				кинематичес	движении точки;
	приемы				кие	приемы
	интегрирования				характеристи	интегрирования
	дифференциальны				ки движения	дифференциальны
	х уравнений				твердого тела	х уравнений
	движения точки;				и его	движения точки;
	теоремы об				отдельных	теоремы об
	изменении				точек при	изменении
	количества				различных	количества
	движения,				видах	движения,
	кинетического				движения	кинетического
	момента и				тела;	момента и
	.,				тола,	
	кинетической					кинетической
	энергии системы.	TT.	П	V	V	энергии системы.
	Уметь (ПК-10):	He	Плохо	Умеет	Умеет	Умеет составлять
	составлять	умеет	умеет	составлять	составлять	уравнения
	уравнения		составлять	уравнения	уравнения	равновесия для
	равновесия для		уравнения	равновесия	равновесия	твердого тела,
	твердого тела,		равновеси	для твердого	для твердого	находящегося под
	находящегося под		я для	тела,	тела,	действием
	действием		твердого	находящегося	находящегос	произвольной
	произвольной		тела,	под	я под	системы сил;
	системы сил;		находящег	действием	действием	вычислять
	вычислять		ося под	произвольной	произвольно	скорости и
	скорости и		действием	системы сил;	й системы	ускорения точек
Второй	ускорения точек		произволь	вычислять	сил;	твердых тел,
этап	твердых тел,		ной	скорости и	вычислять	совершающих
31411	совершающих		системы	ускорения	скорости и	поступательное,
	поступательное,		сил;	точек	ускорения	вращательное или
	вращательное или			твердых тел,	точек	плоское
	плоское			совершающи	твердых тел,	движения;
	движения;			X	совершающи	вычислять
	вычислять			поступательн	X	кинетическую
	кинетическую			oe,	поступательн	энергию
	энергию			вращательно	oe,	многомассовой
	многомассовой			е или	вращательно	системы;
	системы;			плоское	е или	вычислять работу
	вычислять работу			движения;	плоское	сил, приложенных
	сил, приложенных			дымения,	движения;	к твердому телу,
<u> </u>	сил, приложенных				дымспия,	к твердому телу,

поступательном, вращательном и плоском движениях.

4. Шкалы оценивания (балльно-рейтинговая система)

Вид учебной работы, за которую ставятся баллы	Баллы
Участие в online занятиях, прослушивание видео лекций	0 - 5
Лабораторная работа	0 – 15
Контрольный тест к модулю 1	0-6
Контрольный тест к модулю 2	0 - 7
Контрольный тест к модулю 3	0 - 7
Контрольная работа	0 - 30
Итого за учебную работу	0 - 70
ИТОГОВЫЙ КОНТРОЛЬНЫЙ ТЕСТ	0 – 30
Всего	0 - 100

Бальная шкала оценки

Оценка (экзамен)	Баллы
отлично	86 – 100
хорошо	69 – 85
удовлетворительно	51 – 68
неудовлетворительно	менее 51

5. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций при изучении учебной дисциплины в процессе освоения образовательной программы

5. 1. Типовой вариант задания на контрольную работу

Плоская система сил

Кинематика точки

Плоское движение твердого тела

Сложное движение точки

Динамика материальной точки

Теоремы об изменении количества движения и о движении центра масс механической системы. Теорема об изменении кинетического момента механической системы

Теорема об изменении кинетической энергии

Аналитическая механика

Пример решения задачи

Тема: Простейшие движения твердого тела

Уравнение вращения ротора турбины в период разгона из состояния покоя имеет вид $\varphi = 2\pi t^3$. Определить в момент времени $t_1 = 5 c$ после пуска:

- а) угол поворота, угловую скорость, угловое ускорение ротора;
- б) скорость, касательное и нормальное ускорения точки M ротора, отстоящей от оси вращения на расстоянии $R = 0.5 \,\mathrm{M}$.

Решение.

Угол поворота ротора в заданный момент времени

$$\varphi_1 = 2\pi t_1^3 = 250\pi$$
, рад.

Угловая скорость равна

$$\omega = \dot{\varphi} = 6\pi t^2, c^{-1};$$

при
$$t = 5 c$$

$$\omega_1 = \dot{\varphi}_1 = 6\pi t_1^2 = 150\pi, c^{-1}$$
.

Поскольку знаки φ_1 и ω_1 совпадают, вращение происходит в ту же сторону, куда отсчитывается угол поворота φ .

Угловое ускорение равно

$$\varepsilon = \dot{\omega} = 12\pi t$$
, c^{-2} :

при
$$t = 5 c$$

$$\epsilon_1 = \dot{\omega}_1 = 60\pi, c^{-2}.$$

Поскольку знаки ω и ε совпадают, имеет место ускоренное вращение.

Касательная скорость точки М

$$V = \omega R = 6\pi t^2 R$$
, m/c;

при
$$t = 5 \, c$$

$$V = 6\pi t_1^2 R = 75\pi$$
, m/c.

Касательное ускорение точки М

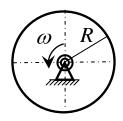
$$W_{\tau} = \varepsilon R = 12\pi t \cdot R, \, \text{m/c}^2$$
;

при
$$t = 5 c$$

$$W_{\tau} = 12\pi t_1 \cdot R = 30\pi, \, \text{m/c}^2$$
.

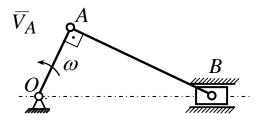
Модуль нормального ускорения точки M

$$W_n = \omega^2 R = 36\pi^2 t^4$$
, m/c²;


при
$$t = 5 \, c$$

$$W_n = \omega^2 R = 36\pi^2 t_1^4 = 11250\pi^2, \, \text{m/c}^2.$$

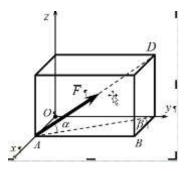
5.2. Типовой вариант задания на лабораторную работу


- В процессе выполнения лабораторной работы «Исследование свободных колебаний при вязком сопротивлении, пропорциональном первой степени скорости» студент должен:
 - 1. Увидеть в процессе эксперимента отличие свободных и затухающих колебаний.
- 2. Уяснить, что даже при малом сопротивлении вязкой среды амплитуда колебаний затухает достаточно быстро, а период колебаний незначительно отличается от периода свободных колебаний.
- 3. Разобраться в сути понятий «декремент колебаний» и «логарифмический декремент колебаний».

5.3.Типовой тест промежуточной аттестации

1.. Маховое колесо радиусом $R=0,5_M$ вращается равноускоренно из состояния покоя; через t=10c угловая скорость колеса равна $\omega=10~pa\partial/c$. Касательное ускорение W_{τ} точки, лежащей на ободе колеса, равно ...

- A. $0.15 m/c^2$.
- B. $0.2 M/c^2$.
- C. $0.5_{M}/c^{2}$.
- $D. 0.35 m/c^2$.



2. В кривошипно-ползунном механизме кривошип OA вращается с угловой скоростью $\omega = 2 \ pad/c$. Длина кривошипа OA = 3см, длина шатуна AB = 4см. В момент времени, когда кривошип и шатун образуют прямой угол, скорость ползуна B равна

ползуна B равна ...

- A. $0,15_M/c^2$.
- *B*. $0,2_M/c^2$.
- *C.* $0,5_M/c^2$.
- $D. 0.35 m/c^2$.
- 3. Мгновенный центр скоростей это...
 - А. Точка тела, имеющая наибольшую скорость.
 - В. Точка тела, через которую проходит ось вращения тела.
 - С. Точка тела, в которой приложена его сила тяжести.
 - D. Точка тела, скорость которой в данный момент времени равна
- 4. Сила \overline{F} направлена по диагонали AD параллелепипеда. Проекция силы F_y на ось O_Y равна...
 - A. $F \cdot \sin \alpha \cdot \sin \beta$.
 - B. $F \cdot \sin \alpha$.

- C. $F \cdot \cos \alpha \cdot \sin \beta$.
- D. $F \cdot \cos \alpha \cdot \cos \beta$.
- 5. Вектор силы разложен на составляющие вдоль осей x, y, z декартовой системы координат: $\overline{F} = 2\overline{i} + 6\overline{j} + 3\overline{k}$ (H). Модуль силы $|\overline{F}|$ равен:

- A. 9H.
- B. 7*H* .
- C. 25*H*.
- D. 18*H* .
- 6. Пусть $\overline{F}\,$ сила, приложенная в какой-то
- точке A; h плечо силы относительно некоторого центра O; \overline{r} радиус-вектор, проведенный из этого центра в точку A. Тогда момент силы \overline{F} относительно центра O определяется формулой...
 - A. $\overline{M}_{O}(\overline{F}) = \overline{F} \cdot \overline{r}$.
 - B. $\overline{M}_o(\overline{F}) = \overline{F} \times \overline{r}$.
 - C. $\overline{M}_{O}(\overline{F}) = \pm F \cdot h$.
 - D. $\overline{M}_{O}(\overline{F}) = \overline{r} \times \overline{F}$.

6. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

- 6.1. Итоговый контрольный тест доступен студенту только во время тестирования, согласно расписания занятий или в установленное проректором по УМР время.
- 6.2. Студент информируется о результатах текущей успеваемости.
- 6.3. Студент получает информацию о текущей успеваемости, начислении бонусных баллов и допуске к процедуре итогового тестирования от преподавателя или в ЭИОС.
- 6.4. Производится идентификация личности студента.
- 6.5. Студентам, допущенным к промежуточной аттестации, открывается итоговый контрольный тест.
- 6.6. Тест закрывается студентом лично по завершении тестирования или автоматически по истечении времени тестирования.